
www.allitebooks.com

http://www.allitebooks.org

Oracle Advanced PL/SQL

Developer Professional Guide

Master advanced PL/SQL concepts along with plenty of

example questions for 1Z0-146 examination

Saurabh K. Gupta

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle Advanced PL/SQL Developer Professional Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2012

Production Reference: 1070512

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-722-5

www.packtpub.com

Cover Image by Tina Negus (tina_manthorpe@sky.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Saurabh K. Gupta

Reviewers

Kamran Agayev A.

Mohan Dutt

Marcel Hoefs

Ronald Rood

Acquisition Editor

Rukshana Khambatta

Lead Technical Editor

Pramila Balan

Technical Editors

Vrinda Amberkar

Prasad Dalvi

Project Coordinator

Alka Nayak

Proofreaders

Linda Morris

Kevin McGowan

Indexer

Rekha Nair

Graphics

Valentina D'Silva

Manu Joseph

Production Coordinator

Nilesh R. Mohite

Cover Work

Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Many of us learned to use PL/SQL recently; many did this many years ago. At that
time simple problems required simple PL/SQL code, with lots of procedural code
in it. Isn't the procedural part what PL/SQL is all about? Yes, it is, but this is also a
threat because, when it is not used smartly, the procedural looping might become a
performance hog.

Pl/SQL has evolved a lot. Bulk collections should be commonly in use now. Many
programmers that support multiple vendors have little or no knowledge about
Oracle collections. Because of this they write code like we did during v7, leaving the
huge performance beneits, that Oracle has, untouched.

For these programmers this book is a very helpful addition to their library of
knowledge. It helps them to easily perform the same task, but maybe 70 times faster,
without making the code more complex. Using the advanced techniques described
in the book you can do that. Don't mix up "advanced" with "complex". The fun about
this is that many make their code complex using simple PL/SQL, trying to gain some
performance, instead of effectively using advanced constructs in PL/SQL that in the
end make the code easier to read and understand.

There is more to ind in the book. Being a DBA, performance attracts a certain
amount of attention. This is because performance is important. It greatly impacts the
scalability of a database and the end user experience of the application. Other things
you might ind useful are the interfaces with the outside world, where external
procedures can do work that does not it the characteristics of a database.

Security is also something that attracts a DBA. Here you will ind implementations
of Virtual Private Database and enough remarks to keep the reader learning for
quite a while. For example, how to protect against SQL injection? This again is a very
interesting topic that should be taken very seriously. These days no network is safe.
So scan every input.

www.allitebooks.com

http://www.allitebooks.org

I won't mention everything that is covered, just ind a keyboard, your local database,
and start reading. Try out the code samples and see where you can modify your
existing code to take advantage of the new insights that the book will give you.

How advanced are the techniques described here depends on your mileage. For
many the contents will be valuable enough to justify the term "advanced". As a
reviewer it was a pleasure to read it and to try to push Saurabh Gupta to his limits.
For me, I could use this book, even today.

Ronald Rood

Oracle ACE, Oracle DBA, OCM

PL/SQL is a programming language that is not only used by application developers,
but also by database administrators in their daily tasks. This book contains
information that every developer and even DBAs should know. As you read this
book, you'll deinitely learn a lot of new facts about PL/SQL programming. This
book provides detailed information on general PL/SQL programming language,
analyzing, tuning, tracing, and securing your code.

What I like most about the book is that it contains a lot of examples and helpful
scripts for each chapter. This book also contains a lot of questions for the 1Z0-146
examination at the end of each chapter and it's one of the best guides for getting
ready to pass the exam.

If you're a PL/SQL developer, whether a beginner or an expert, this book is
for you.

Kamran Agayev A.

Oracle ACE, Oracle DBA Expert

www.allitebooks.com

http://www.allitebooks.org

About the Author

Saurabh K. Gupta got introduced to Oracle database around 5 years ago. Since
then, he has been synchronizing his on job and off job interests with Oracle database
programming. As an Oracle 11g Certiied Advanced PL/SQL Professional, he soon
moved from programming to database designing, development, and day-to-day
database administration activities. He has been an active Oracle blogger and OTN
forum member. He has authored and published more than 70 online articles and
papers. His work can be seen in RMOUG journal, PSOUG, dbanotes, Exforsys,
and Club Oracle. He shares his technical experience through his blog: http://
sbhoracle.wordpress.com/. He is a member of All India Oracle Users Group
(AIOUG) and loves to participate in technical meets and conferences.

Besides digging into Oracle, sketching and snooker are other pastimes for him.
He can be reached through his blog SbhOracle for any comments, suggestions, or
feedback regarding this book.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

On a professional note, I am obliged to Ronald Rood, Kamran Agayev, Mohan Dutta,
and Marcel Hoefs who reviewed the book with their own insights and perspectives.
I was excited with the fact that the technical reviewers of my book are Oracle ACEs,
highly respected, and recognized experts in the industry. I am grateful to Ronald
who judged the worth of the book from the DBA perspective and helped me to
extend my limits on the administrative aspect as well. Thanks to Kamran Agayev
who consistently encouraged my writing styles and gave valuable inputs on the
chapters. My obligations to Mohan Dutta and Marcel Hoefs who invested their
valuable time in my work and added to the quality of the content. I would also like
to express my gratitude for Arup Nanda, who has always been a great source of
inspiration for me. His sessions and articles, covering all areas of Oracle database,
have always been a great source of knowledge and motivation for me.

I would like to extend the appreciation to Packt Publishing for considering my
proposal and accepting to go ahead on this book. My sincere thanks to Rukshana
Khambatta, the Acquisition Editor at Packt for coordinating the kick-off activities of
the book. I deeply appreciate the efforts of the Project Coordinator, Alka Nayak; the
Lead Technical Editor, Pramila Balan; and the Technical Editors Vrinda Amberkar
and Prasad Dalvi, whose diligent work and coordination added extra miles to the
project. There was great tuning established between us and I am glad we worked
parallely on the editorial process while abiding by the timelines.

It is correctly said that a man's personal and professional achievements are a
showcase of his family's support and encouragement. I dedicate all my efforts and
works to my parents, Suresh Chandra Gupta and Swadesh Gupta and family for
their inevitable support, motivation, and sacriices, and nurturing me towards all
my achievements. Sincere thanks to my wife, Neha, and Sir J.B. Mall for their love,
consistent support, and conidence in my endeavors and for being with me during
my tough times.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Kamran Agayev A. is an Oracle ACE and Oracle Certiied Professional DBA
working at Azercell Telecom. He's an author of the book, Oracle Backup & Recovery:
Expert secrets for using RMAN and Data Pump, and also shares his experience with a
lot of step-by-step articles and video tutorials in his blog at http://kamranagayev.
com. He also presents at Oracle OpenWorld, TROUG, and local events.

Mohan Dutt is an Oracle expert, having presented more than 55 sessions at Oracle
conferences worldwide. An Oracle evangelist at large, he was awarded Member of
the Year by Oracle Applications User Group (OAUG) in 2007. He authors the world's
irst blog dedicated entirely to Oracle certiication. He has founded and chaired 3
Oracle Special Interest Groups (SIG). He was recognized as an Oracle ACE in 2011.

Marcel Hoefs learned his trade participating in numerous Oracle development
projects, as an Oracle developer, since 1997. Being a specialist in SQL and PL/SQL
database development, Oracle Forms, Reports, and Designer, Marcel currently
works as a Technical Architect, Lead Developer, and Performance Specialist. With
the advent of web technologies such as Web Services, ADF, and APEX, he currently
specializes in innovative solutions opening up traditional Oracle database systems to
the Web. As a senior Oracle Consultant with CIBER, he is also an Oracle competence
leader, organizing and participating in knowledge sharing sessions with participants
from within and outside CIBER.

www.allitebooks.com

http://kamranagayev.com
http://kamranagayev.com
http://www.allitebooks.org

Ronald Rood is an innovating Oracle DBA with over 20 years of IT experience.
He has built and managed cluster databases on almost each and every platform that
Oracle has ever supported, from the famous OPS databases in version 7, until the
latest RAC releases, currently being 11g. Ronald is constantly looking for ways to get
the most value out of the database to make the investment for his customers even
more valuable. He knows how to handle the power of the rich Unix environment
very well and this is what makes him a irst class trouble-shooter and a true Oracle
ACE. Next to the spoken languages such as Dutch, English, German, and French, he
also writes luently in many scripting languages.

Currently, Ronald is a principal consultant working for CIBER in The Netherlands
where he cooperates in many complex projects for large companies where downtime
is not an option. CIBER or CBR is a global full service IT provider and Oracle
Platinum Partner.

Ronald often replies in the Oracle forums, writes his own blog (http://ronr.
blogspot.com) called "From errors we learn" and writes for various Oracle related
magazines. He also wrote a book, Mastering Oracle Scheduler in Oracle 11g Databases,
where he ills the gap between the Oracle documentation and customers' questions.
You can ind him on Twitter at http://twitter.com/ik_zelf.

Ronald has lots of certiications:

•	 Oracle Certiied Master
•	 Oracle Certiied Professional
•	 Oracle Database 11g Tuning Specialist

•	 Oracle Database 11g Data Warehouse Certiied Implementation Specialist

Ronald ills his time with Oracle, his family, sky-diving, radio controlled model
airplane lying, running a scouting group, and having a lot of fun.

He quotes, "A problem is merely a challenge that might take a little time
to be solved".

http://ronr.blogspot.com
http://ronr.blogspot.com

www.PacktPub.com

Support iles, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book

library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print, and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents

Preface 1

Chapter 1: Overview of PL/SQL Programming Concepts 9
PL/SQL—the procedural aspect 10

My irst PL/SQL program 11
PL/SQL development environments 13

SQL Developer 13
SQL Developer—the history 15

Creating a connection 15

SQL Worksheet 16

Executing a SQL statement 18

Calling a SQL script from SQL Developer 19

Creating and executing an anonymous PL/SQL block 21

Debugging the PL/SQL code 21

Editing and saving the scripts 23

SQL*Plus 24
Executing a SQL statement in SQL*Plus 26

Executing an anonymous PL/SQL block 26

Procedures 27

Executing a procedure 28

Functions 29
Function—execution methods 31

Restrictions on calling functions from SQL expressions 32

PL/SQL packages 33
Cursors—an overview 35

Cursor execution cycle 35

Cursor attributes 36

Cursor FOR loop 38

Exception handling in PL/SQL 39
System-deined exceptions 39
User-deined exceptions 41

Table of Contents

[ii]

The RAISE_APPLICATION_ERROR procedure 43

Exception propagation 46

Managing database dependencies 48

Displaying the direct and indirect dependencies 49

Dependency metadata 50

Dependency issues and enhancements 50

Reviewing Oracle-supplied packages 51
Summary 52
Practice exercise 52

Chapter 2: Designing PL/SQL Code 55
Understanding cursor structures 55

Cursor execution cycle 56

Cursor design considerations 57

Cursor design—guidelines 58

Cursor attributes 59

Implicit cursors 60

Explicit cursors 62

Cursor variables 66

Ref cursor types—strong and weak 69
SYS_REFCURSOR 69

Processing a cursor variable 70

Cursor variables as arguments 71

Cursor variables—restrictions 73

Subtypes 74

Subtype classiication 75
Oracle's predeined subtypes 75
User-deined subtypes 76

Type compatibility with subtypes 77

Summary 78
Practice exercise 78

Chapter 3: Using Collections 81
Collections—an overview 82

Categorization 83

Selecting an appropriate collection type 84

Associative arrays 84

Nested tables 88

Nested table collection type as the database object 90
DML operations on nested table columns 91

A nested table collection type in PL/SQL 93

Additional features of a nested table 94

Varray 98

Table of Contents

[iii]

Varray in PL/SQL 99

Varray as a database collection type 100
DML operations on varray type columns 100

Collections—a comparative study 103
Common characteristics of collection types 103

Nested table versus associative arrays 104

Nested table versus varrays 105

PL/SQL collection methods 105
EXISTS 105

COUNT 106

LIMIT 107

FIRST and LAST 108

PRIOR and NEXT 109

EXTEND 109

TRIM 111

DELETE 112

Manipulating collection elements 113
Collection initialization 115
Summary 117
Practice exercise 117

Chapter 4: Using Advanced Interface Methods 121

Understanding external routines 122

Architecture of external routines 122

Oracle Net Coniguration 125
TNSNAMES.ora 125

LISTENER.ora 126

Oracle Net Coniguration veriication 129
Beneits of external procedures 130

Executing external C programs from PL/SQL 131
Executing C program through external procedure—development steps 131

Executing Java programs from PL/SQL 136
Calling a Java class method from PL/SQL 137

Uploading a Java class into the database—development steps 137

The loadjava utility—an illustration 137

Creating packages for Java class methods 140

Summary 141
Practice exercise 141

Chapter 5: Implementing VPD with Fine Grained Access Control 145
Fine Grained Access Control 146

Overview 146

Virtual Private Database—the alias 147

Table of Contents

[iv]

How FGAC or VPD works? 147
Salient features of VPD 148

VPD implementation—outline and components 149
Application context 150

Policy function deinition and implementation of row-level security 153
Associating a policy using the DBMS_RLS package 155

VPD implementation—demonstrations 156
Assignment 1—implementing VPD using simple security policy 157

Assignment 2—implementing VPD using an application context 159

VPD policy metadata 163
Policy utilities—refresh and drop 164

Summary 165
Practice exercise 165

Chapter 6: Working with Large Objects 169
Introduction to the LOB data types 170

Internal LOB 171

External LOB 171

Understanding the LOB data types 172
LOB value and LOB locators 172

BLOB or CLOB! 172

BFILE 173

Temporary LOBs 173

Creating LOB data types 173
Directories 173

Creating LOB data type columns in a table 175

Managing LOB data types 177
Managing internal LOBs 178

Securing and managing BFILEs 178

The DBMS_LOB package—overview 179
Security model 179

DBMS_LOB constants 180

DBMS_LOB data types 180

DBMS_LOB subprograms 181

Rules and regulations 182

Working with the CLOB, BLOB, and BFILE data types 183
Initializing LOB data type columns 184

Inserting data into a LOB column 185

Populating a LOB data type using an external ile 185
Selecting LOB data 189

Modifying the LOB data 190

Delete LOB data 192

Miscellaneous LOB notes 192

Table of Contents

[v]

LOB column states 193

Locking a row containing LOB 193

Opening and closing LOBs 193

Accessing LOBs 193

LOB restrictions 194

Migrating from LONG to LOB 194
Using temporary LOBs 196

Temporary LOB operations 196

Managing temporary LOBs 197

Validating, creating, and freeing a temporary LOB 198

Summary 200
Practice exercise 200

Chapter 7: Using SecureFile LOBs 205
Introduction to SecureFiles 206

SecureFile LOB—an overview 207
Architectural enhancements in SecureFiles 208

SecureFile LOB features 210

Working with SecureFiles 211

SecureFile metadata 213

Enabling advanced features in SecureFiles 214
Deduplication 214

Compression 215

Encryption 216

Migration from BasicFiles to SecureFiles 220
Online Redeinition method 221

Summary 224
Practice exercise 225

Chapter 8: Compiling and Tuning to Improve Performance 227
Native and interpreted compilation techniques 228

Real native compilation 229

Selecting the appropriate compilation mode 230
When to choose interpreted compilation mode? 230

When to choose native compilation mode? 231

Setting the compilation mode 231

Querying the compilation settings 232

Compiling a program unit for a native or interpreted compilation 233

Compiling the database for PL/SQL native compilation (NCOMP) 235

Tuning PL/SQL code 238
Comparing SQL and PL/SQL 239

Avoiding implicit data type conversion 239

Understanding the NOT NULL constraint 241

Using the PLS_INTEGER data type for arithmetic operations 243

Table of Contents

[vi]

Using a SIMPLE_INTEGER data type 245

Modularizing the PL/SQL code 246

Using bulk binding 248
Using SAVE_EXCEPTIONS 252

Rephrasing the conditional control statements 254
Conditions with an OR logical operator 254

Conditions with an AND logical operator 254

Enabling intra unit inlining 255
PLSQL_OPTIMIZE_LEVEL—the Oracle initialization parameter 256

Case 1—PLSQL_OPTIMIZE_LEVEL = 0 256

Case 2—PLSQL_OPTIMIZE_LEVEL = 1 258

Case 3—PLSQL_OPTIMIZE_LEVEL = 2 259

Case 4—PLSQL_OPTIMIZE_LEVEL = 3 260

PRAGMA INLINE 262

Summary 265
Practice exercise 265

Chapter 9: Caching to Improve Performance 269
Introduction to result cache 270

Server-side result cache 271
SQL query result cache 272

PL/SQL function result cache 272

OCI client results cache 273

Coniguring the database for the server result cache 273
The DBMS_RESULT_CACHE package 276

Implementing the result cache in SQL 277
Manual result cache 277

Automatic result cache 279

Result cache metadata 281
Query result cache dependencies 283

Cache memory statistics 283

Invalidation of SQL result cache 284

Displaying the result cache memory report 286

Read consistency of the SQL result cache 287

Limitation of SQL result cache 287

Implementing result cache in PL/SQL 288
The RESULT_CACHE clause 288

Cross-session availability of cached results 292

Invalidation of PL/SQL result cache 292

Limitations of PL/SQL function result cache 294
Argument and return type restrictions 294

Function structural restrictions 294

Summary 295
Practice exercise 295

Table of Contents

[vii]

Chapter 10: Analyzing PL/SQL Code 299
Track coding information 299

[DBA | ALL | USER]_ARGUMENTS 301

[DBA | ALL | USER]_OBJECTS 304

[DBA | ALL | USER]_SOURCE 306

[DBA | ALL | USER]_PROCEDURES 307

[DBA | ALL | USER]_DEPENDENCIES 308

Using SQL Developer to ind coding information 310
The DBMS_DESCRIBE package 313

DBMS_UTILITY.FORMAT_CALL_STACK 316

Tracking propagating exceptions in PL/SQL code 318

Determining identiier types and usages 319
The PL/Scope tool 320

The PL/Scope identiier collection 320
The PL/Scope report 322

Illustration 322

Applications of the PL/Scope report 325

The DBMS_METADATA package 326
DBMS_METADATA data types and subprograms 327

Parameter requirements 330

The DBMS_METADATA transformation parameters and ilters 330
Working with DBMS_METADATA—illustrations 332

Case 1—retrieve the metadata of a single object 332

Case 2—retrieve the object dependencies on the F_GET_LOC function 335

Case 3—retrieve system grants on the ORADEV schema 335

Case 4—retrieve objects of function type in the ORADEV schema 336

Summary 337
Practice exercise 337

Chapter 11: Proiling and Tracing PL/SQL Code 339
Tracing the PL/SQL programs 340

The DBMS_TRACE package 341
Installing DBMS_TRACE 341

DBMS_TRACE subprograms 341

The PLSQL_DEBUG parameter and the DEBUG option 343

Viewing the PL/SQL trace information 344

Demonstrating the PL/SQL tracing 347

Proiling the PL/SQL programs 350
Oracle hierarchical proiler—the DBMS_HPROF package 351

View proiler information 352
Demonstrating the proiling of a PL/SQL program 352

The plshprof utility 357
Sample reports 359

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[viii]

Summary 361
Practice exercise 361

Chapter 12: Safeguarding PL/SQL Code against SQL

Injection Attacks 365
SQL injection—an introduction 366

SQL injection—an overview 366

Types of SQL injection attacks 369

Preventing SQL injection attacks 369

Immunizing SQL injection attacks 370
Reducing the attack's surface 370

Controlling user privileges 371

Invoker's and deiner's rights 371
Avoiding dynamic SQL 375

Bind arguments 378

Sanitizing inputs using DBMS_ASSERT 379
The DBMS_ASSERT package 380

Testing the code for SQL injection laws 386
Test strategy 386

Reviewing the code 386

Static code analysis 387

Fuzz tools 387

Generating test cases 387

Summary 388
Practice exercise 388

Appendix: Answers to Practice Questions 391
Chapter 1, Overview of PL/SQL Programming Concepts 391
Chapter 2, Designing PL/SQL Code 392
Chapter 3, Using Collections 393
Chapter 4, Using Advanced Interface Methods 394
Chapter 5, Implementing VPD with Fine Grained Access Control 395
Chapter 6, Working with Large Objects 396
Chapter 7, Using SecureFile LOBs 397
Chapter 8, Compiling and Tuning to Improve Performance 398
Chapter 9, Caching to Improve Performance 400
Chapter 10, Analyzing PL/SQL Code 401
Chapter 11, Proiling and Tracing PL/SQL Code 401
Chapter 12, Safeguarding PL/SQL Code against SQL Injection Attacks 402

Index 405

Preface
Oracle Database 11g brings in a weighted package of new features which takes the
database management philosophy from instrumental to self-intelligence level. The
new database features, which are more properly called "advanced", rather than
"complex", aim either of the two purposes:

•	 Replacement of a workaround solution with a permanent one
(as an enhancement)

•	 By virtue of routine researches and explorations, introduce a fresh feature
to help database administrators and developers with their daily activities

Oracle Advanced PL/SQL Professional Guide focuses on advanced features of Oracle
11g PL/SQL. The areas targeted are PL/SQL code design, measuring and optimizing
PL/SQL code performance, and analyzing PL/SQL code for reporting purposes and
immunizing against attacks. The advanced programming topics such as usage of
collections, implementation of VPD, interaction with external procedures in PL/SQL,
performance orientation by caching results, tracing and proiling techniques, and
protecting against SQL injection will familiarize you with the latest programming
indings, trends and recommendations of Oracle. In addition, this book will help you
to learn the latest, best practices of PL/SQL programming in terms of code writing,
code analyzing for reporting purposes, tracing for performance, and safeguarding
the PL/SQL code against hackers.

An investment in knowledge pays the best interest.

 -Benjamin Franklin

Preface

[2]

The fact remains that the technical certiications from Oracle Corporation establish a
benchmark of technical expertise and credibility, and set the tone of an improved career
path for application developers. With the growing market in database development,
Oracle introduced Advanced PL/SQL Professional Certiication (1Z0-146) in the year
2008. The OCP (1Z0-146) certiication exam tests aspirants on knowledge of advanced
PL/SQL concepts (validated up to Oracle 11g Release 1). An advanced PL/SQL
professional is expected to independently design, develop, and tune the PL/SQL code
which can eficiently interface database systems and user applications.

The book, Oracle Advanced PL/SQL Professional Guide, is a sure recommendation for the
preparation of the OCP certiication (1Z0-146) exam. Advanced PL/SQL topics are
explained thoroughly with the help of demonstrations, igures, and code examples.
The book will not only explain a feature, but will also teach its implementation and
application. You can easily pick up the content structure followed in the book. The
code examples can be tried on your local database setups to give you a feel of the usage
of a speciic feature in real time scenarios.

What this book covers
Chapter 1, Overview of PL/SQL Programming Concepts, covers the overview of
PL/SQL as the primary database programming language. It describes the
characteristics of the language and its strengths in database development. This
chapter speeds up with the structure of a PL/SQL block and reviews PL/SQL
objects such as procedures, functions, and packages. In this chapter, we will also
learn to work with SQL Developer.

Chapter 2, Designing PL/SQL Code, discusses the handling of cursors in a PL/SQL
program. This chapter helps you to learn the guidelines for designing a cursor,
usage of cursor variables, and cursor life cycle.

Chapter 3, Using Collections, introduces a very important feature of
PL/SQL—collections. A collection in a database is very similar to arrays or
maps in other programming languages. This chapter compares collection types
and makes recommendations for the appropriate selection in a given situation.
This chapter also covers the collection methods which are utility APIs for
working with collections.

Chapter 4, Using Advanced Interface Methods, teaches how to interact with an external
program written in a non-PL/SQL language, within PL/SQL. It demonstrates the
execution steps for external procedures in PL/SQL. This steps describe the network
coniguration on a database server (mounted on Windows OS), library object
creation, and publishing of a non-language program as an external routine.

Preface

[3]

Chapter 5, Implementing VPD with Fine Grained Access Control, introduces the concept
of Fine Grained Access in PL/SQL. The working of FGAC as Virtual Private
Database is explained in detail along with an insight into its key features. You
will ind stepwise implementation of VPD with the help of policy function and
the DBMS_RLS package. This chapter also describes policy enforcement through
application contexts.

Chapter 6, Working with Large Objects, discusses the traditional and conventional
way of handling large objects in an Oracle database. This chapter starts with the
familiarization of the available LOB data types (BLOB, CLOB, BFILE, and Temporary
LOBs) and their signiicance. You will learn about the creation of LOB types in
PL/SQL and their respective handling operations. This chapter demonstrates the
management of LOB data types using SQL and the DBMS_LOB package.

Chapter 7, Using SecureFile LOBs, introduces one of the key innovations in
Oracle 11g —SecureFiles. SecureFiles are upgraded LOBs which work on an
improved philosophy of storage and maintenance. The key improvements of
SecureFiles—deduplication, compression, and encryption—are licensed features.
This chapter discusses and demonstrates the implementation of these three
properties. You will learn how to migrate (or rather upgrade) the existing older
LOBs into a new scheme—SecureFiles. The migration techniques covered use an
online redeinition method and a partition method.

Chapter 8, Compiling and Tuning to Improve Performance, describes fair practices in
effective PL/SQL programming. You will be very interested to discover how better
code writing impacts code performance. This chapter explains an important aspect
of query optimization—the PLSQL_OPTIMIZE_LEVEL parameter. The code behavior
and optimization strategy at each level will help you to understand the language
internals. Subsequently, the new PRAGMA feature will give you a deeper insight
into subprogram inlining concepts.

Chapter 9, Caching to Improve Performance, covers another hot feature of Oracle 11g
Database—server-side result caching. The newly introduced server-side cache
component in SGA holds the results retrieved from SQL query or PL/SQL function.
This chapter describes the coniguration of a database server for caching feature
through related parameters, implementation in SQL through RESULT_CACHE hint and
implementation in PL/SQL function through the RESULT_CACHE clause. Besides the
implementation section, this chapter teaches the validation and invalidation of result
cache, using the DBMS_RESULT_CACHE package.

Preface

[4]

Chapter 10, Analyzing PL/SQL Code, helps you to understand and learn code
diagnostics tricks and code analysis for reporting purposes. You will learn to
monitor identiier usage, about compilation settings, and generate the subsequent
reports from SQL Developer. This chapter discusses a very important addition
in Oracle 11g—PL/Scope. It covers the explanations and illustrations to generate
the structural reports through the dictionary views. In addition, this chapter
also demonstrates the use of the DBMS_METADATA package to retrieve and extract
metadata of database objects from the database in multiple formats.

Chapter 11, Proiling and Tracing PL/SQL Code, aims to demonstrate the tracing
and proiling features in PL/SQL. The tracing demonstration uses the
DBMS_TRACE package to trace the enabled or all calls in a PL/SQ program. The
PL/SQL hierarchical proiler is a new innovation in 11g to identify and report the
time consumed at each line of the program. The biggest beneit is that raw proiler
data can be reproduced meaningfully into HTML reports.

Chapter 12, Safeguarding PL/SQL Code against SQL Injection Attacks, discusses the SQL
injection as a concept and its remedies. The SQL injection is a serious attack on the
vulnerable areas of the PL/SQL code which can lead to extraction of conidential
information and many fatal results. You will learn the impacts and precautionary
recommendations to avoid injective attacks. This chapter discusses the preventive
measures such as using invoker's rights, client input validation tips, and using
DBMS_ASSERT to sanitize inputs. It concludes on the testing strategies which can be
practiced to identify vulnerable areas in SQL.

Appendix, Answers to Practice Questions, contains the answers to the practice questions
for all chapters.

What you need for this book
You need to have a sound understanding of SQL and PL/SQL basics. You must have
mid-level experience of working with Oracle programming.

Who this book is for
The book is for associate-level developers who are aiming for professional-level
certiication. This book can also be used to understand and practice advanced PL/
SQL features of Oracle.

Preface

[5]

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The SERVEROUTPUT parameter is a
SQL*Plus variable which enables the printing of block debug messages."

A block of code is set as follows:

/*Start the PL/SQL block*/

DECLARE

/*Declare a local variable and initialize with a default value*/

 L_NUM NUMBER := 15;

 L_RES NUMBER;

BEGIN

/*Calculate the double of local variable*/

L_RES := L_NUM *2;

/*Print the result*/

 DBMS_OUTPUT.PUT_LINE('Double of '||TO_CHAR(L_NUM)||' is '||TO_
CHAR(L_RES));

END;

/

Double of 15 is 30

PL/SQL procedure successfully completed.

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

/*Check if the cursor is already open*/

 IF NOT C_EMP%ISOPEN THEN

 DBMS_OUTPUT.PUT_LINE('Cursor is closed....Cursor has to be
opened');

 END IF;

Any command-line input or output is written as follows:

 SQL> HELP INDEX

Preface

[6]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Right-click on the Connections node and select New Connection… to open
the connection wizard".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the iles e-mailed directly to you.

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Overview of PL/SQL

Programming Concepts
In the summer of 1970, Dr. E.F. Codd published his paper, A Relational Model of Data
for Large Shared Data Banks, for the ACM journal. The projected model was accepted
and subsequently an interactive database language, SQL, was developed by IBM
Corporation, Inc. In 1979, Relational Software, Inc. stepped into the commercial
implementation of SQL as the primary RDBMS language. Later, Relational Software,
Inc. transformed into Oracle and since then, its story has been a success.

The Structured Query Language or SQL (pronounced "Sequel") has been used as
the primary interactive language for all data operations such as selection, creation,
and manipulation. Besides data operations, the language has administrative
and monitoring features which ensure data consistency, integrity, and object
controllability. By virtue of its multifaceted and versatile behavior in data centric
environments, all major RDBMS support SQL as a database interaction language.
The universal acceptance of SQL eases the logical usability across the databases
(such as MySQL and SQL Server) with minor syntactical modiications.

Over the initial years of exploration, the procedural limitations of SQL were
identiied which prevented it from being an eficient programming language
amongst the fourth generation languages. The head to head competition and
demanding expectations of the industry led to the evolution of a procedural version
of SQL in the Oracle database family. The irst version of PL/SQL was debuted in
Oracle 6.0 (in 1991) as an optional procedural extension in SQL* forms. Since its
induction, PL/SQL has emerged as a strong and proven database programming
language. With the release of Oracle 11g database (in 2007), PL/SQL has successfully
stepped into its 11.0 version.

www.allitebooks.com

http://www.allitebooks.org

Overview of PL/SQL Programming Concepts

[10]

In this chapter, we will tour the Oracle PL/SQL programming concepts to get
an overview of PL/SQL block, subprograms, exception handling, and object
dependencies. The chapter outlines the beneits and characteristics of the language
in the following sections:

•	 Introduction to PL/SQL

•	 Oracle development tools—SQL Developer and SQL*Plus

•	 Recapitulate procedures, functions, packages, and cursors

•	 Exception handling

•	 Object dependencies

•	 Major Oracle supplied packages

PL/SQL—the procedural aspect
PL/SQL stands for Procedural Language-Structured Query Language. It is a
signiicant member of the Oracle programming toolset and extensively used to
code server-side programs. Some of its major accomplishments are that it:

•	 Supports programming constructs to design a program unit

•	 Implements business logic in an Oracle server using cursors and database
objects such as packages, subprograms, and many more

•	 Makes the application portability easier

•	 Preserves execution privileges and transaction management

•	 Makes use of advanced PL/SQL features such as collections to process bulk
data and enhance performance

•	 Allows external programs to be executed from PL/SQL

As a language, the different perceptions of PL/SQL are as follows:

•	 An interactive and structured language: The PL/SQL language comprises
of a glossary of expressive and explanatory keywords. The self-indenting,
structured feature, and ANSI compatibility ensures quick learning and
adaptation for an individual.

•	 An embedded language: A PL/SQL program is not environment-dependent
but can be easily invoked from any recognized Oracle development
environment such as SQL* Plus, SQL Developer, TOAD, reporting tools,
and so on.

Chapter 1

[11]

•	 An integral language: A database manager can easily integrate a PL/SQL
server-side program with other client-side programming interfaces such as
Java, C++, or .NET. The PL/SQL procedures or subprograms can be invoked
from client programs as executable statements.

My irst PL/SQL program
A PL/SQL block is the elementary unit of a program which groups a set of
executable procedural statements. A block has deined "start" and "end" stages
and it has three forms:

•	 Anonymous: This block is an unnamed PL/SQL block which is persistent for
single execution only

•	 Named: This block contains named PL/SQL programs which are stored
physically in the database as schema objects

•	 Nested: A block within another PL/SQL block forms a nested block structure

The skeleton of a PL/SQL block has four sections:

•	 Header: This is an optional section which is required for the named blocks.
It contains block name, block owner's name, parameter speciications, and
return type speciication (for functions).

•	 Declaration: This is an optional section which is used for declaration of local
variables, cursors, and local subprograms. The DECLARE keyword indicates
the beginning of the declaration section.

•	 Execution: This is the mandatory section of a PL/SQL block which contains
the executable statements. These statements are parsed by the PL/SQL
engine and executed on the block invocation. The BEGIN and END keywords
indicate the beginning and end of an executable section.

•	 Exception: This is the optional section of the block which contains the
exception handlers. The appropriate exception handler is activated upon any
exception raised from the executable section to suggest alternate steps. The
EXCEPTION keyword indicates the start of the exception section.

Downloading the example code

You can download the example code iles for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/
support and register to have the iles e-mailed directly to you.

Overview of PL/SQL Programming Concepts

[12]

The following block diagram shows the structure of a PL/SQL block. The sections
marked in red are the mandatory ones with the others being optional:

Program Header

(Required for Stored subprograms only)

DECLARE

<Local variable declarations>

BEGIN

<Executable statements>

EXCEPTION

<Exception handling statements>

END;

The PL/SQL following program illustrates the declaration and executable sections. The
program declares a number variable, calculates its double value, and prints the result.

/*Enable the Serveroutput to display block messages*/

SET SERVEROUTPUT ON

The SERVEROUTPUT parameter is a SQL*Plus variable which
enables the printing of block debug messages. It is discussed

in detail in the SQL*Plus section.

/*Start the PL/SQL block*/

DECLARE

/*Declare a local variable and initialize with a default value*/

 L_NUM NUMBER := 15;

 L_RES NUMBER;

BEGIN

/*Calculate the double of local variable*/

L_RES := L_NUM *2;

/*Print the result*/

 DBMS_OUTPUT.PUT_LINE('Double of '||TO_CHAR(L_NUM)||' is '||TO_
CHAR(L_RES));

END;

/

Double of 15 is 30

PL/SQL procedure successfully completed.

Chapter 1

[13]

PL/SQL development environments
Oracle provides and recommends the usage of its development tools for SQL
writing and code execution. This chapter will cover the two main developer tools
from Oracle:

•	 SQL Developer

•	 SQL*Plus

However, there are many SQL development interfaces available on the Web such as
TOAD from Quest Software, Dreamcoder by Mentat Technologies, and so on.

SQL Developer
SQL Developer is a Graphical User Interface (GUI) tool from the Oracle
Corporation. It is free to use and includes a wide spectrum of new features with each
of its releases. It allows the users to perform database activities such as SQL writing,
PL/SQL execution, DBA activities easily, interactively, and considerably within time.
Many of the database utilities such as unit testing, proiling, extended search, and
SQL monitoring have been implemented as GUI utilities and can be easily used with
the PL/SQL programs. The latest version of SQL Developer is 3.1 (3.1.07.42) which
has been released on February 7, 2012. SQL Developer can be downloaded from the
Oracle Technology Network link:

http://www.oracle.com/technetwork/developer-tools/sql-developer/
downloads/index.html

The latest release of the database development tool offers new features such as
inclusion of RMAN under DBA navigator, support for data pump technology,
renovated data copy and difference features, support for migration to Teradata
and Sybase, and generation of PDF reports.

The key accomplishments offered by SQL Developer are:

•	 Authenticating and connecting to multiple Oracle databases

•	 Allowing creation and maintenance of schema objects packages, procedures,
functions, triggers, indexes and views

•	 Querying and manipulating the data

•	 Database utilities such as version maintenance, admin activities, migration,
and database export

•	 Support for SQL*Plus commands

Overview of PL/SQL Programming Concepts

[14]

The major offerings shown in the preceding list are by virtue of the tool features.
The salient features of the SQL Developer tool are:

•	 Connection browser and Schema browser

•	 SQL Worksheet and Query Builder

•	 Database import and export utility wizard

•	 Database user-deined reports
•	 Code repository coniguration for version control
•	 Database copy and migration utility wizard

•	 Third-party databases

•	 Oracle APEX integration

•	 TimesTen integration

The following screenshot shows the Start Page of Oracle SQL Developer:

Chapter 1

[15]

SQL Developer—the history
The following lowchart demonstrates the release history of SQL Developer:

SQL Developer 1.X

SQL Developer 1.2.X

SQL Developer 1.5.X

SQL Developer 1.5.4

SQL Developer 1.5.5

SQL Developer 1.5.6

SQL Developer 2.0

SQL Developer 3.0

Release with Oracle 11g R1

Database Migration introduced in SQL Developer

New features such as Version Control and File Management introduced

Supported 9 languages

Released with Oracle 11g R2

Released with Oracle JDeveloper 11g

PL/SQL unit testing and Data Modeler Viewer

Latest Release

Creating a connection
Once the SQL Developer tool is downloaded from the Oracle Technology Network
(OTN) website (in ZIP format), it is ready for use and does not require any
installation. The target server can be Oracle 11g database software. For educational
and practice purposes, Oracle recommends the usage of the Oracle Database Express
edition. It can be downloaded for free from the following URL:

http://www.oracle.com/technetwork/database/express-edition/overview/
index.html

By default, the database software installation takes care of the Oracle database
coniguration and Oracle network coniguration.

Now, we shall start working with SQL Developer to connect to the database.
The irst and foremost step is establishing the connection to the target database.

Overview of PL/SQL Programming Concepts

[16]

The steps for creating a connection in SQL Developer are as follows:

1. Double-click on \\sqldeveloper\sqldeveloper.exe.

2. Go to Menu | View | Connections. A tabbed page titled Connections
will appear at the left-hand side of the page. The top node of the tree
is Connections.

3. Right-click on the Connections node and select New Connection… to open
the connection wizard.

4. Specify the connection name, username, password, connection type, role
(DBA or default), host name, port number, and SID of the target database.
Connection type must be Basic if you specify the connection parameters.
If TNS, then select a connection string from the Network Alias drop-down
list (which is in sync with the TNSNAMES.ORA ile)

5. Check the Save Password option to allow the Connection wizard to
remember the password of this user.

6. Click on the Test button to verify the connection. The status (success or
error message) will appear in the wizard's console.

7. Click on the Connect button to connect to the database. By default, it
opens a SQL Worksheet to write and execute queries.

SQL Worksheet
The SQL Worksheet window is the primary editor to perform database activities. It is
used to write and execute SQL statements, PL/SQL code, and SQL*Plus commands.

A new worksheet can be opened in two ways:

•	 Hitting the shortcut key, Alt + F10

•	 Navigating to Tools | SQL Worksheet

Chapter 1

[17]

When a SQL worksheet is opened by following either of the preceding options,
a window pops up which prompts the user to select the database connection
applicable for the current worksheet. The available database connection to open
a new SQL worksheet can be selected from the drop-down option:

The worksheet contains multiple, quick utility actions as iconized menus. These
menus perform a few of the basic activities associated with a script execution;
for example, running a script, autotrace, and explain plan. With reference to the
preceding screenshot of a sample SQL worksheet, the menu functions are
described as follows:

•	 Run Statement: It executes the statement at the current cursor position.

•	 Run Script: It executes a script.

•	 Autotrace: It generates trace information about the statement.

Overview of PL/SQL Programming Concepts

[18]

•	 Explain Plan: It generates an execution plan for the query, starting at the
current cursor position

•	 SQL Tuning Advisor: It advises the tuning tips for the current user. The user
must have ADVISOR system privilege to use this icon.

•	 Commit: It commits the ongoing transaction in the current session.

•	 Rollback: It rollbacks the ongoing transaction in the current session.

•	 Unshared SQL Worksheet: It opens a new SQL worksheet.

•	 To Upper/Lower/InitCaps: It changes the string case of the statement to
upper or lower or initial caps.

•	 Clear: It clears all the statements from the current SQL Worksheet.

•	 SQL History: It opens a dialog box with all the SQL statements executed
for this user.

Executing a SQL statement
A SQL statement can be executed from the SQL Worksheet in three ways:

•	 Selecting the SQL statement and clicking on the Run Statement or Run
Script icon from the Worksheet menu

•	 Selecting the SQL statement and pressing F9

•	 Terminating the SQL statement with a semicolon and pressing Ctrl + Enter

The result of the SQL statement execution is displayed in the Query Result tab. The
following screenshot shows the execution of the SELECT statement using Ctrl + Enter:

The SQL Worksheet doesn't supports some SQL*Plus
commands such as append, archive, attribute, and break.

Chapter 1

[19]

Calling a SQL script from SQL Developer
A SQL script saved on a speciic OS location can be invoked from SQL Developer
Worksheet. We will cover an overview of the two methods to execute a saved
SQL script:

•	 A saved SQL script from an OS location can be invoked in The SQL
Worksheet. It can be executed either by clicking on the Run Script (or F5)
icon, or Ctrl + Enter or F9. The output of the script is displayed in the
Script Output tab.

www.allitebooks.com

http://www.allitebooks.org

Overview of PL/SQL Programming Concepts

[20]

•	 Another option to invoke a saved script is to open it from the menu path, File
| Open. Navigate to the script location and open the script. The script code
would be opened in a new SQL Worksheet. Note that the worksheet's name
is renamed as the actual script name. Now, the code can be executed using
the Run Script icon.

A SQL script, Test_Script.sql at the C:\Labs\ location contains the following
SQL statement:

SELECT * FROM EMPLOYEES

/

As shown in the following screenshot, the script has been invoked in the SQL
Worksheet using SQL*Plus execute command, @:

Chapter 1

[21]

Creating and executing an anonymous
PL/SQL block
An anonymous PL/SQL block can be written and executed, as shown in the
following screenshot. Note that the PL/SQL block must be terminated with a
semicolon. The Script Output tab displays the conirmed status of the block
execution as anonymous block completed.

The block output can be viewed in the Dbms Output Tab. This tab remains hidden
until it can be enabled and activated by navigating to Menu | View | Dbms Output:

Debugging the PL/SQL code
The PL/SQL code can be debugged to observe the execution low. The PL/SQL
blocks and stored subprograms (procedures, functions, triggers, and packages) can
be compiled for debugging.

Overview of PL/SQL Programming Concepts

[22]

An anonymous PL/SQL block can be debugged by selecting the block and
choosing the Debug option from the right-click option list, as shown in the
following screenshot:

Once the Debug option is clicked, the debugging starts and the following output
appears in the Messages tab:

 Connecting to the database ORADEV.

 Executing PL/SQL: ALTER SESSION SET PLSQL_DEBUG=TRUE

 Executing PL/SQL: CALL DBMS_DEBUG_JDWP.CONNECT_TCP
 ('127.0.0.1', '3953')

 Debugger accepted connection from database on port 3953.

 Executing PL/SQL: CALL DBMS_DEBUG_JDWP.DISCONNECT()

 Sum of two given Numbers:35

 Process exited.

 Disconnecting from the database ORADEV.

 Debugger disconnected from database.

Chapter 1

[23]

The database user must have DEBUG CREATE SESSION and
DEBUG ANY PROCEDURE privileges to debug the PL/SQL code.

Likewise, the stored subprograms can be compiled using Compile for Debug to
mark them for the debugging process. Henceforth, the execution of the subprograms
can be traced line by line using the Oracle supplied package, DBMS_TRACE.

Editing and saving the scripts
SQL Developer provides enhanced editing features while writing the code in the
SQL Worksheet. The automated code completion suggestion in the drop-down menu
effectively eases the code writing. Besides, the PL/SQL syntax highlights, member
method drop-down menu, code folding, and bookmarks are the other code editing
features available in the SQL Worksheet.

A stored subprogram in the schema object tree can be opened in the SQL Worksheet
for editing.

The following screenshot shows the auto-code completion feature of SQL Developer.
You can select any of the available options as suited for the script:

Overview of PL/SQL Programming Concepts

[24]

The SQL statements or PL/SQL code in the current SQL Worksheet can be saved as
a text or SQL ile at any speciied location on the OS. Either follow the full navigation
path (File | Save) or use the quick utility Save icon. Once the Windows Save dialog
box appears, navigate to the target location, specify the ilename, and click on the
Save button.

SQL*Plus
SQL*Plus is a command-line utility interface and has been one of the primitive
interfaces used by database professionals for database activities. The SQL*Plus
session is similar to the SQL Worksheet of SQL Developer, where you can write
and execute SQL statements and PL/SQL code.

Starting from Oracle 5.0, the SQL*Plus interface has been a part of the Oracle
development kit. With regular revisions and enhancements in subsequent Oracle
releases, it has been deprecated in the Oracle 11g release to recommend the use of
SQL Developer. However, the SQL*Plus environment can still be established from
command prompt.

The evolution cycle of SQL*Plus is shown in the following diagram:

User Friendly

interface (Oracle

4.0)

Initiate

(Oracle 5.0)

Oracle

Server

Manager

(Oracle 7.0)

SQL*Plus

(Oracle 8.0)

Obsolete

(Oracle 11g)

The Oracle SQL*Plus session can be invoked from sqlplus.exe. This executable ile
is located in the $Oracle_home\bin folder. Alternatively, it can also be invoked by
performing the following steps:

1. Open command prompt.

2. Enter SQLPLUS, press Enter. Note the SQL*Plus welcome message. The editor
will prompt for a username and password.

3. Enter the username, password, and database connection string. Press Enter.

4. Connect to the database:

 C:\>SQLPLUS

 SQL*Plus: Release 11.2.0.1.0 Production on Fri Dec 23 14:20:36 2011

 Copyright (c) 1982, 2010, Oracle. All rights reserved.

Chapter 1

[25]

 Enter user-name: ORADEV/ORADEV

 Connected to:

 Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production

 With the Partitioning, OLAP, Data Mining and Real Application Testing
options

 SQL>

SQL*Plus has its own set of shell commands which can be used for the execution of
scripts, editing the code, and formatting the query output.

The complete set of SQL*Plus commands can be obtained by entering HELP [INDEX
|?] after the SQL prompt. The complete list of SQL*Plus commands are as follows:

 SQL> HELP INDEX

 Enter Help [topic] for help.

 @ COPY PAUSE SHUTDOWN

 @@ DEFINE PRINT SPOOL

 / DEL PROMPT SQLPLUS

 ACCEPT DESCRIBE QUIT START

 APPEND DISCONNECT RECOVER STARTUP

 ARCHIVE LOG EDIT REMARK STORE

 ATTRIBUTE EXECUTE REPFOOTER TIMING

 BREAK EXIT REPHEADER TTITLE

 BTITLE GET RESERVED WORDS (SQL) UNDEFINE

 CHANGE HELP RESERVED WORDS (PL/SQL) VARIABLE

 CLEAR HOST RUN WHENEVER OSERROR

 COLUMN INPUT SAVE WHENEVER SQLERROR

 COMPUTE LIST SET XQUERY

 CONNECT PASSWORD SHOW

Overview of PL/SQL Programming Concepts

[26]

Executing a SQL statement in SQL*Plus
A SQL statement can be executed in the SQL*Plus editor, terminated by a semicolon
or a forward slash (/). The following screenshot demonstrates the execution of a
SELECT statement. The query selects the names of all employees from the EMPLOYEES
table:

Executing an anonymous PL/SQL block
Similar to the execution in SQL Developer, a PL/SQL block can be executed in
SQL*Plus. The SERVEROUTPUT environment variable has to be set to ON to display
the results in the editor.

The following screenshot demonstrates the execution of a PL/SQL block
in SQL*Plus:

Chapter 1

[27]

Procedures
A procedure is a derivative of PL/SQL block structure which is identiied by its
own speciic name. It is stored as a schema object in the database and implements
business logic in the applications. For this reason, procedures are often referred
to as Business Managers of PL/SQL which not only maintain the business logic
repository, but also demonstrate solution scalability and a modular way of
programming.

The characteristics of procedures are as follows:

•	 A procedure can neither be called from a SELECT statement nor can
it appear as a right-hand operand in an assignment statement. It has
to be invoked from the executable section of a PL/SQL block as a
procedural statement.

•	 They can optionally accept parameters in IN, OUT, or IN OUT mode.

•	 This implies that the only possibility for a procedure to return a value is
through OUT parameters, but not through the RETURN [value] statement.
The RETURN statement in a procedure is used to exit the procedure and skip
the further execution.

For recapitulation, the following table differentiates between the IN, OUT, and
IN OUT parameters:

IN OUT IN OUT

Default parameter mode Has to be explicitly deined Has to be explicitly deined
Parameter's value is passed
into the program from the
calling environment

Parameter returns a
value back to the calling
environment

Parameter may pass a value
from the calling environment
to the program or return
a value to the calling
environment

Parameters are passed
by reference

Parameters are passed by
value

Parameters are passed
by value

May be constant, literal,
or initialized variable

Uninitialized variable Initialized variable

Can hold the default value Default value cannot
be assigned

Default value cannot
be assigned

Overview of PL/SQL Programming Concepts

[28]

The syntax for a procedure is as follows:

CREATE [OR REPLACE] PROCEDURE [Procedure Name] [Parameter List]

[AUTHID DEFINER | CURRENT_USER]

IS

 [Declaration Statements]

BEGIN

 [Executable Statements]

EXCEPTION

 [Exception handlers]

END [Procedure Name];

The following standalone procedure converts the case of the input string from
lowercase to uppercase:

/*Create a procedure to convert the string from lower case to
upper case*/

CREATE OR REPLACE PROCEDURE P_TO_UPPER (P_STR VARCHAR2)

IS

/*Declare the local variables*/

 L_STR VARCHAR2(50);

BEGIN

/*Convert the case using UPPER function*/

 L_STR := UPPER(P_STR);

/*Display the output with appropriate message*/

 DBMS_OUTPUT.PUT_LINE('Input string in Upper case : '||L_STR);

END;

/

Procedure created.

Executing a procedure
A procedure can be either executed from SQL*Plus or from a PL/SQL block.
The P_TO_UPPER procedure can be executed from SQL*Plus.

The following illustration shows the execution of the procedure from SQL*Plus
(note that the parameter is passed using the bind variable):

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SQL> SET SERVEROUTPUT ON

/*Declare a session variable for the input*/

SQL> VARIABLE M_STR VARCHAR2(50);

Chapter 1

[29]

/*Assign a test value to the session variable*/

SQL> EXECUTE :M_STR := 'My first PLSQL procedure';

PL/SQL procedure successfully completed.

/*Call the procedure P_TO_UPPER*/

SQL> EXECUTE P_TO_UPPER(:M_STR);

Input string in Upper case : MY FIRST PLSQL PROCEDURE

PL/SQL procedure successfully completed.

The P_TO_UPPER procedure can be called as a procedural statement within an
anonymous PL/SQL block:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SQL> SET SERVEROUTPUT ON

/*Start a PL/SQL block*/

SQL> BEGIN

 /*Call the P_TO_UPPER procedure*/

 P_TO_UPPER ('My first PLSQL procedure');

 END;

 /

Input string in Upper case : MY FIRST PLSQL PROCEDURE

PL/SQL procedure successfully completed.

Functions
Like a procedure, a function is also a derivative of a PL/SQL block structure which
is physically stored within a database. Unlike procedures, they are the "workforce" in
PL/SQL and meant for calculative and computational activities in the applications.

The characteristics of functions are as follows:

•	 Functions can be called from SQL statements (SELECT and DMLs). Such
functions must accept only IN parameters of valid SQL types. Alternatively,
a function can also be invoked from SELECT statements if the function body
obeys the database purity rules.

www.allitebooks.com

http://www.allitebooks.org

Overview of PL/SQL Programming Concepts

[30]

•	 Functions can accept parameters in all three modes (IN, OUT, and IN OUT)
and mandatorily return a value. The type of the return value must be a
valid SQL data type (not be of BOOLEAN, RECORD, TABLE, or any other
PL/SQL data type).

The syntax for a function is as follows:

CREATE [OR REPLACE] FUNCTION [Function Name] [Parameter List]

RETURN [Data type]

[AUTHID DEFINER | CURRENT_USER]

[DETERMINISTIC | PARALLEL_ENABLED | PIPELINES]

[RESULT_CACHE [RELIES_ON (table name)]]

IS

 [Declaration Statements]

BEGIN

 [Executable Statements]

 RETURN [Value]

EXCEPTION

 [Exception handlers]

END [Function Name];

The standalone function, F_GET_DOUBLE, accepts a single argument and
returns its double:

/*Create the function F_GET_DOUBLE*/

CREATE OR REPLACE FUNCTION F_GET_DOUBLE (P_NUM NUMBER)

RETURN NUMBER /*Specify the return data type*/

IS

/*Declare the local variable*/

 L_NUM NUMBER;

BEGIN

/*Calculate the double of the given number*/

 L_NUM := P_NUM * 2;

/*Return the calculated value*/

 RETURN L_NUM;

END;

/

Function created.

Chapter 1

[31]

Function—execution methods
As a common feature shared among the stored subprograms, functions can
be invoked from a SQL*Plus environment and called from a PL/SQL as a
procedural statement.

The following code snippet demonstrates the execution of a function from a SQL*Plus
environment and its return value have been captured in a session bind variable:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SQL> SET SERVEROUTPUT ON

/*Declare a session variable M_NUM to hold the function output*/

SQL> VARIABLE M_NUM NUMBER;

/*Function is executed and output is assigned to the session
variable*/

SQL> EXEC :M_NUM := F_GET_DOUBLE(10);

PL/SQL procedure successfully completed.

/*Print the session variable M_NUM*/

SQL> PRINT M_NUM

M_NUM

20

Now, we will see the function execution from an anonymous PL/SQL block as
a procedural statement:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SQL> SET SERVEROUTPUT ON

SQL>DECLARE

 M_NUM NUMBER;

 BEGIN

 M_NUM := F_GET_DOUBLE(10);

 DBMS_OUTPUT.PUT_LINE('Doubled the input value as : '||M_NUM);

 END;

 /

Doubled the input value as : 20

PL/SQL procedure successfully completed.

Overview of PL/SQL Programming Concepts

[32]

Restrictions on calling functions from
SQL expressions
Unlike procedures, a stored function can be called from SELECT statements; provided
it must not violate the database purity levels. These rules are as follows:

•	 A function called from a SELECT statement cannot contain DML statements

•	 A function called from a UPDATE or DELETE statement on a table cannot query
(SELECT) or perform transaction (DMLs) on the same table

•	 A function called from SQL expressions cannot contain the TCL
(COMMIT or ROLLBACK) command or the DDL (CREATE or ALTER) command

Besides these rules, a standalone user-deined function must qualify the
following conditions:

•	 The parameters to the stored function, if any, should be passed in "pass by
reference" mode that is, IN parameter only. The data type of the parameter
must be a valid SQL data type. Also, the parameters must follow positional
notation in the list.

•	 The return type of the function must be a valid SQL data type.

The F_GET_DOUBLE function can easily be embedded within a SELECT statement as it
perfectly respects all the preceding rules:

/*Invoke the function F_GET_DOUBLE from SELECT statement*/

SQL> SELECT F_GET_DOUBLE(10) FROM DUAL;

F_GET_DOUBLE(10)

 20

In Oracle, DUAL is a table owned by the SYS user, which has a single column, DUMMY,
of VARCHAR2 (1) type. It was irst designed by Charles Weiss while working with
internal views to duplicate a row. The DUAL table is created by default during the
creation of data dictionaries with a single row, whose value is X. The users other
than SYS, use its public synonym, to select the value of pseudo columns, such as
USER, SYSDATE, NEXTVAL, or CURRVAL. Oracle 10g has considerably improved the
performance implications of the DUAL table through a "fast dual" access mechanism.

Chapter 1

[33]

PL/SQL packages
Packages are the database objects which behave as libraries and grounds on the
principle of encapsulation and data hiding. A package is privileged to contain
a variety of constructs such as subprograms, variables, cursors, exceptions, and
variables. In addition, it enjoys multiple add-on features such as subprogram
overloading, public and private member constructs, and so on.

Standalone subprograms cannot be overloaded. Only packaged
subprograms can be overloaded by virtue of their signatures.

The following diagram shows the advantages of a package:

Package

Benefits

Better

performance

Overloading

Data hiding Encapsulation

Modularity

A package has two components—package speciication and package body. While
package speciication contains the prototype of public constructs, the package body
contains the deinition of public, as well as private (local) constructs.

The characteristics of package speciication are as follows:

•	 Package speciication is the mandatory component of the package.
A package cannot exist without its speciication.

•	 Package speciication contains the prototypes of the constructs. The
prototype is the forward declaration of the constructs which would be
referenced later in the package body. The subprogram (procedure and
function) prototype includes the signature information with a semicolon.
The subprograms, once prototyped, must have their deinition in the package
body section. The package speciication cannot contain an executable section.

Overview of PL/SQL Programming Concepts

[34]

•	 These member constructs enjoy their visibility within and outside the
package. They can be invoked from outside the package by the
privileged users.

The public constructs of a package are accessed as
[PACKAGE NAME].[CONSTRUCT].

•	 The valid package constructs can be PL/SQL types, variables, exceptions,
procedures, and functions.

•	 If package speciication contains variables, they are implicitly initialized
to NULL by Oracle.

The characteristics of the package body are as follows:

•	 The package body contains the deinition of the subprograms which were
declared in package speciication.

•	 The package body can optionally contain local constructs. The visibility scope
of the local constructs is limited to the package body only.

•	 The package body is an optional component; a package can exist in a
database without its package body.

The syntax for creating a package is as follows:

CREATE [OR REPLACE] PACKAGE [NAME] IS

 [PRAGMA]

 [PUBLIC CONSTRUCTS]

END;

CREATE [OR REPLACE] PACKAGE BODY [NAME] IS

 [LOCAL CONSTRUCTS]

 [SUBPROGRAM DEFINITION]

 [BEGIN…END]

END;

Note the optional BEGIN-END block in the package body. It is optional, but gets
executed only the irst time the package is referenced. They are used for initialization
of global variables.

A package can be compiled with its speciication component alone. In such cases,
packaged program units cannot be invoked as their executable logic has not been
deined yet.

Chapter 1

[35]

The compilation of a package with speciication and body ensures the concurrency
between the program units prototyped in the speciication and the program units
deined in the package body. All the packaged program units are compiled in the
single package compilation. If the package is compiled with errors, it is created as an
invalid object in the database. The USER_OBJECTS dictionary view is used to query
the status of a schema object. The STATUS column in the view shows the current
status as VALID or INVALID.

Cursors—an overview
Cursors make a concrete conceptual ground for database professionals. In simple
words, a cursor is a memory pointer to a speciic private memory location where a
SELECT statement is processed. This memory location is known as a context area.

Every SQL statement in a PL/SQL block can be realized as a cursor. The context area is
the memory location which records the complete information about the SQL statement
currently under process. The processing of the SQL statement in this private memory
area involves its parsing, data fetch, and retrieval information. The data retrieved
should be pulled into local variables and, henceforth, used within the program.

On the basis of their management, cursors are classiied as implicit and
explicit cursors.

The Oracle server is fully responsible for the complete execution cycle of an implicit
cursor. Oracle implicitly creates a cursor for all SQL statements (such as SELECT,
INSERT, UPDATE, and DELETE) within the PL/SQL blocks.

For explicit cursors, the execution cycle is maneuvered by database programmers.
Explicit cursors are meant only for the SELECT statements which can fetch one or
more rows from the database. The developers have the complete privilege and
control to create a cursor, fetch data iteratively, and close the cursor.

Cursor execution cycle
Let us have a quick tour through the cursor management and execution cycle.
Note that this execution cycle starts after the cursor has been prototyped in the
declarative section:

Open

Cursor
Parse SQL Bind SQL

Execute

query
Fetch

Result

Close

Cursor

Open Fetch Close

Overview of PL/SQL Programming Concepts

[36]

•	 The OPEN stage allocates the context area in Process Global Area (PGA)
for carrying out further processing (parsing, binding, and execution) of the
SELECT statement associated with the cursor. In addition, the record pointer
moves to the irst record in the data set.

•	 The FETCH stage pulls the data from the query result set. If the result set is a
multi-record set, the pointer increments with every fetch. The Fetch stage is
live until the last record is reached in the result set.

•	 The CLOSE stage closes the cursor, lushes the context area, and releases the
memory back to the PGA.

Cursor attributes
The cursor attributes, which carry important information about the cursor processing
at each stage of their execution, are as follows:

•	 %ROWCOUNT: Number of rows returned/changed in the last executed query.
Applicable for SELECT as well as DML statements.

•	 %ISOPEN: Boolean TRUE if the cursor is still open, else FALSE. For an implicit
cursor, it is only FALSE.

•	 %FOUND: Boolean TRUE, if the fetch operation switches and points to a record,
else FALSE.

•	 %NOTFOUND: Boolean FALSE when the cursor pointer switches but does not
point to a record in the result set.

%ISOPEN is the only cursor attribute which is accessible outside
the cursor execution cycle.

We will illustrate the usage of cursor attributes with a simple PL/SQL program. The
following program implements the %ISOPEN, %NOTFOUND, and %ROWCOUNT attributes
to iterate the employee data from the EMPLOYEES table and display it:

/*Enable the SERVEROUTPUT to display block messages*/

SET SERVEROUTPUT ON

/*Start the PL/SQL Block*/

DECLARE

/*Declare a cursor to select employees data*/

 CURSOR C_EMP IS

 SELECT EMPNO,ENAME

 FROM EMPLOYEES;

Chapter 1

[37]

 L_EMPNO EMPLOYEES.EMPNO%TYPE;

 L_ENAME EMPLOYEES.ENAME%TYPE;

BEGIN

/*Check if the cursor is already open*/

 IF NOT C_EMP%ISOPEN THEN

 DBMS_OUTPUT.PUT_LINE('Cursor is closed....Cursor has to be
opened');

 END IF;

/*Open the cursor and iterate in a loop*/

 OPEN C_EMP;

 LOOP

/*Fetch the cursor data into local variables*/

 FETCH C_EMP INTO L_EMPNO, L_ENAME;

 EXIT WHEN C_EMP%NOTFOUND;

/*Display the employee information*/

 DBMS_OUTPUT.PUT_LINE(chr(10)||'Display Information for
employee:'||C_EMP%ROWCOUNT);

 DBMS_OUTPUT.PUT_LINE('Employee Id:'||L_EMPNO);

 DBMS_OUTPUT.PUT_LINE('Employee Name:'||L_ENAME);

 END LOOP;

END;

/

Cursor is closed....Cursor has to be opened

Display Information for employee:1

Employee Id:7369

Employee Name:SMITH

Display Information for employee:2

Employee Id:7499

Employee Name:ALLEN

Display Information for employee:3

Employee Id:7521

Employee Name:WARD

Display Information for employee:4

Employee Id:7566

Employee Name:JONES

….

PL/SQL procedure successfully completed.

Overview of PL/SQL Programming Concepts

[38]

Cursor FOR loop
The iterative construct, FOR loop, can be aligned to the cursor execution cycle.
The beneit is that the cursor can be directly accessed without physically opening,
fetching, or closing the cursor. In addition, it reduces the overhead of declaring local
identiiers. The stages are handled implicitly by the FOR loop construct.

The cursor FOR loop qualiies for the best programming practices where the cursor
carries multi-row set. The following program demonstrates the working of a cursor
FOR loop:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SQL> SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare an explicit cursor to select employee name and salary*/
 CURSOR CUR_EMP IS

 SELECT ENAME, SAL

 FROM EMPLOYEES;

BEGIN

/*FOR Loop uses the cursor CUR_EMP directly*/
 FOR EMP IN CUR_EMP

 LOOP

/*Display appropriate message*/
 DBMS_OUTPUT.PUT_LINE('Employee '||EMP.ENAME||' earns '||EMP.SAL||'
per month');

 END LOOP;

END;

/

Employee SMITH earns 800 per month

Employee ALLEN earns 1600 per month

Employee WARD earns 1250 per month

Employee JONES earns 2975 per month

Employee MARTIN earns 1250 per month

Employee BLAKE earns 2850 per month

Employee CLARK earns 2450 per month

Employee SCOTT earns 3000 per month

Employee KING earns 5000 per month

Employee TURNER earns 1500 per month

Employee ADAMS earns 1100 per month

Employee JAMES earns 950 per month

Employee FORD earns 3000 per month

Employee MILLER earns 1300 per month

PL/SQL procedure successfully completed.

Chapter 1

[39]

Exception handling in PL/SQL
During runtime, the abnormal program low which occurs within a precompiled
program unit with the actual data is known as an exception. Such errors can be
trapped in the EXCEPTION section of a PL/SQL block. The exception handlers within
the section can capture the appropriate error and redirect the program low for an
alternative or inal task. An eficient exception handling ensures safe and secure
termination of the program. The situation without exceptions may become serious if
the program involves transactions and the program doesn't handle the appropriate
exception, thus ending up in abrupt termination of the program.

There are two types of exceptions—system-deined exceptions and user deined
exceptions. While system deined exceptions are implicitly raised by the Oracle
server, user-deined exceptions follow different ways to be explicitly raised within
the program.

In addition, Oracle avails two utility functions, SQLCODE and SQLERRM, to retrieve
the error code and message for the last occurred exception.

System-deined exceptions
As the name suggests, the system-deined exceptions are deined and maintained
implicitly by the Oracle server. They are deined in the Oracle STANDARD package.
Whenever an exception occurs inside the program. The Oracle server matches and
identiies the appropriate exception from the available set of exceptions. Majorly,
these exceptions have a negative error code associated with it. In addition to the
error code and error message, the system-deined exceptions have a short name
which is used with the exception handlers.

For example, ORA-01422 is the error code for the TOO_MANY_ROWS exception whose
error message is "exact fetch returns more than requested number of rows". But the
name is required only in exception handlers.

The PL/SQL block contains a SELECT statement which selects the name and salary
of an employee whose employee ID is one of the declared variables. Note that such
SELECT statements are more prone to the NO_DATA_FOUND exception.

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SQL> SET SERVEROUT ON

/*Start the PL/SQL block*/

SQL> DECLARE

 /*Declare the local variables*/

 L_ENAME VARCHAR2 (100);

www.allitebooks.com

http://www.allitebooks.org

Overview of PL/SQL Programming Concepts

[40]

 L_SAL NUMBER;

 L_EMPID NUMBER := 8376;

 BEGIN

 /*SELECT statement to fetch the name and salary details of
the employee*/

 SELECT ENAME, SAL

 INTO L_ENAME, L_SAL

 FROM EMPLOYEES

 WHERE EMPNO = L_EMPID;

 EXCEPTION

 /*Exception Handler when no data is fetched from the
table*/

 WHEN NO_DATA_FOUND THEN

 /*Display an informative message*/

 DBMS_OUTPUT.PUT_LINE ('No Employee exists with the id '||L_
EMPID);

 END;

 /

No Employee exists with the id 837

PL/SQL procedure successfully completed.

The following table consolidates some of the common system-deined exceptions
along with their ORA error code:

Error Named exception Comments (raised when)

ORA-00001 DUP_VAL_ON_INDEX Duplicate value exists

ORA-01001 INVALID_CURSOR Cursor is invalid

ORA-01012 NOT_LOGGED_ON User is not logged in

ORA-01017 LOGIN_DENIED System error occurred

ORA-01403 NO_DATA_FOUND The query returns no data

ORA-01422 TOO_MANY_ROWS A single row query returns
multiple rows

ORA-01476 ZERO_DIVIDE A number is attempted to divide
by zero

ORA-01722 INVALID_NUMBER The number is invalid

ORA-06504 ROWTYPE_MISMATCH Mismatch occurred in row type

ORA-06511 CURSOR_ALREADY_OPEN Cursor is already open

ORA-06531 COLLECTION_IS_NULL Working with NULL collection

ORA-06532 SUBSCRIPT_OUTSIDE_LIMIT Collection index out of range

ORA-06533 SUBSCRIPT_BEYOND_COUNT Collection index out of count

Chapter 1

[41]

User-deined exceptions
Sometimes, the programs are expected to follow agile convention norms of an
application. The programs must have standardized error codes and messages.
Oracle gives lexibility in declaring and implementing your own exceptions
through user-deined exceptions.

Unlike system-deined exceptions, they are raised explicitly in the BEGIN…END section
using the RAISE statement.

There are three ways of declaring user-deined exceptions:

•	 Declare the EXCEPTION type variable in the declaration section. Raise it
explicitly in the program body using the RAISE statement. Handle it in the
EXCEPTION section. Note that here no error code is involved.

•	 Declare the EXCEPTION variable and associate it with a standard error
number using PRAGMA EXCEPTION_INIT.

A Pragma is a clue to the compiler to manipulate the
behavior of the program unit during compilation, and
not at the time of execution.

PRAGMA EXCEPTION_INIT can also be used to map
an exception to a non-predeined exception. These are
standard errors from the Oracle server, but not deined
as PL/SQL exceptions.

•	 Use the RAISE_APPLICATION_ERROR to declare own error number and
error message.

The following PL/SQL block declares a user-deined exception and raises it in
the program body:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SQL> SET SERVEROUTPUT ON

/*Declare a bind variable M_DIVISOR*/

SQL> VARIABLE M_DIVISOR NUMBER;

/*Declare a bind variable M_DIVIDEND*/

SQL> VARIABLE M_DIVIDEND NUMBER;

/*Assign value to M_DIVISOR as zero*/

SQL> EXEC :M_DIVISOR := 0;

Overview of PL/SQL Programming Concepts

[42]

PL/SQL procedure successfully completed.

/*Assign value to M_DIVIDEND as 10/

SQL> EXEC :M_DIVIDEND := 10;

PL/SQL procedure successfully completed.

/*Start the PL/SQL block*/

SQL> DECLARE

 /*Declare the local variables and initialize with the bind
variables*/

 L_DIVISOR NUMBER := :M_DIVISOR;

 L_DIVIDEND NUMBER := :M_DIVIDEND;

 L_QUOT NUMBER;

 /*Declare an exception variable*/

 NOCASE EXCEPTION;

 BEGIN

 /*Raise the exception if Divisor is equal to zero*/

 IF L_DIVISOR = 0 THEN

 RAISE NOCASE;

 END IF;

 L_QUOT := L_DIVIDEND/L_DIVISOR;

 DBMS_OUTPUT.PUT_LINE('The result : '||L_QUOT);

 EXCEPTION

 /*Exception handler for NOCASE exception*/

 WHEN NOCASE THEN

 DBMS_OUTPUT.PUT_LINE('Divisor cannot be equal to zero');

 END;

 /

Divisor cannot be equal to zero

PL/SQL procedure successfully completed.

/*Assign a non zero value to M_DIVISOR and execute the PL/SQL
block again*/

SQL> EXEC :M_DIVISOR := 2;

PL/SQL procedure successfully completed.

SQL> /

The result : 5

PL/SQL procedure successfully completed.

Chapter 1

[43]

The RAISE_APPLICATION_ERROR procedure
Oracle gives privilege to the database programmers to create their own error number
and associate an error message, too. These are dynamic user deined exceptions and
are done through an Oracle-supplied method, RAISE_APPLICATION_ERROR. It can be
implemented either in the executable section to capture speciic and logical errors, or
it can be used in the exception section to handle errors of a generic nature.

The syntax for the RAISE_APPLICATION_ERROR procedure is as follows:

RAISE_APPLICATION_ERROR (error_number, error_message[, {TRUE |
FALSE}])

In this syntax, the error_number parameter is a mandatory formal parameter
whose value must be in the range of -20000 to -20999. The second parameter,
error_message, corresponds to the error number and appears with the exception
when raised in the program. The last parameter is the optional parameter which
allows the error to be added to the current error stack. By default, its value is FALSE.

The following program rewrites the last program by creating a user-deined
exception, dynamically (note that it doesn't have the EXCEPTION type variable):

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SQL> SET SERVEROUTPUT ON

/*Declare a bind variable M_DIVISOR*/

SQL> VARIABLE M_DIVISOR NUMBER;

/*Declare a bind variable M_DIVIDEND*/

SQL> VARIABLE M_DIVIDEND NUMBER;

/*Assign value to M_DIVISOR as zero*/

SQL> EXEC :M_DIVISOR := 0;

PL/SQL procedure successfully completed.

/*Assign value to M_DIVIDEND as 10/

SQL> EXEC :M_DIVIDEND := 10;

PL/SQL procedure successfully completed.

/*Start the PL/SQL block*/

SQL> DECLARE

 /*Declare the local variables and initialize them with
bind variables*/

Overview of PL/SQL Programming Concepts

[44]

 L_DIVISOR NUMBER := :M_DIVISOR;

 L_DIVIDEND NUMBER := :M_DIVIDEND;

 L_QUOT NUMBER;

 BEGIN

 /*Raise the exception using RAISE_APPLICATION_ERROR is
the divisor is zero*/

 IF L_DIVISOR = 0 THEN

 RAISE_APPLICATION_ERROR(-20005,'Divisor cannot be equal
to zero');

 END IF;

 L_QUOT := L_DIVIDEND/L_DIVISOR;

 DBMS_OUTPUT.PUT_LINE('The result : '||L_QUOT);

 EXCEPTION

 /*Print appropriate message in OTHERS exception handler*/

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 END;

 /

ORA-20005: Divisor cannot be equal to zero

PL/SQL procedure successfully completed.

/*Assign a non zero value to M_DIVISOR and check the output of the
PL/SQL block*/

SQL> EXEC :M_DIVISOR := 2;

PL/SQL procedure successfully completed.

SQL> /

The result : 5

PL/SQL procedure successfully completed.

As soon as the exception is raised through RAISE_APPLICATION_ERROR, the program
control skips the further execution and jumps to the EXCEPTION section. As there is
no exception name mapped against this error code, only OTHERS exception handler
can handle the exception.

Chapter 1

[45]

If a EXCEPTION variable has been declared and mapped to the same user-deined
error number, the exception handler can be created with the exception variable.
Let us rewrite the preceding program to include an exception variable and suitable
exception handler. The following program demonstrates the working of user-deined
exceptions and dynamic user-deined exceptions in a single program:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SQL> SET SERVEROUTPUT ON

/*Declare a bind variable M_DIVISOR*/

SQL> VARIABLE M_DIVISOR NUMBER;

/*Declare a bind variable M_DIVIDEND*/

SQL> VARIABLE M_DIVIDEND NUMBER;

/*Assign value to M_DIVISOR as zero*/

SQL> EXEC :M_DIVISOR := 0;

PL/SQL procedure successfully completed.

/*Assign value to M_DIVIDEND as 10/

SQL> EXEC :M_DIVIDEND := 10;

PL/SQL procedure successfully completed.

/*Start the PL/SQL block*/

SQL> DECLARE

 /*Declare an exception variable*/

 NOCASE EXCEPTION;

 /*Declare the local variables and initialize them with
bind variables*/

 L_DIVISOR NUMBER := :M_DIVISOR;

 L_DIVIDEND NUMBER := :M_DIVIDEND;

 L_QUOT NUMBER;

 /*Map the exception with a non predefined error number*/

 PRAGMA EXCEPTION_INIT(NOCASE,-20005);

 BEGIN

 /*Raise the exception using RAISE statement if the
divisor is zero*/

 IF L_DIVISOR = 0 THEN

 RAISE_APPLICATION_ERROR(-20005,'Divisor cannot be equal
to zero');

 END IF;

Overview of PL/SQL Programming Concepts

[46]

 L_QUOT := L_DIVIDEND/L_DIVISOR;

 DBMS_OUTPUT.PUT_LINE('The result : '||L_QUOT);

 EXCEPTION

 /*Include exception handler for NOCASE exception*/

 WHEN NOCASE THEN

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 END;

 /

ORA-20005: Divisor cannot be equal to zero

PL/SQL procedure successfully completed.

Exception propagation
Exception propagation is an important concept when dealing with nested blocks.
A propagating exception always searches for the appropriate exception handler until
its last host. The search starts from the EXCEPTION section of the block, that raised
it, and continues abruptly until the host environment is reached. As soon as the
exception handler is found, the program control resumes the normal low.

The following cases demonstrate the propagation of exception which is raised in the
innermost block:

•	 Case 1: The following diagram shows the state of a nested PL/SQL
block. The inner block raises an exception which is handled in its own
EXCEPTION section:

Chapter 1

[47]

Exception A is raised by the inner block. The inner block handles the
exception A within its scope. After the exception is handled, the program
control resumes the low with statements after the inner block in the
outer block.

•	 Case 2: The following diagram shows the state of a nested PL/SQL block
where the inner block raises an exception but does not handle the same in its
own EXCEPTION section. The EXCEPTION section of the outer block handles
the raised exception:

The inner block raises the exception A but does not handle it, so it gets
propagated to the EXCEPTION section of the enclosing outer block. Note the
abrupt skipping of statements in the outer block.

Overview of PL/SQL Programming Concepts

[48]

Now, the outer block handles the exception A. The exception propagated
from the inner block is handled in the outer block and is then terminated.

•	 Case 3: The following diagram shows the state of a nested PL/SQL block
where both the inner and outer block doesn't handle the exception raised in
the inner block:

Handling for exception A is missing in the inner as well as the outer
block. As a result, the unhandled exception error is raised. The exception
is propagated to the host with an error message and the program is
terminated abruptly.

Managing database dependencies
Oracle objects which avail the standings and services of other objects are dependent
on them. Suppose, a complex view, V, is created on two tables, T1 and T2. The object,
V, is dependent on T1 and T2, while T1 and T2 are the referenced objects. Therefore,
as a thumb rule of dependency, a valid database object can either be a dependent or a
referenced object. The thumb rule of dependency has some exceptions for synonyms
and the package body. While synonyms can always be referenced objects, the
package body is always a dependent object.

Chapter 1

[49]

Database dependency can be classiied as direct or indirect. Consider three
objects—P, M, and N. If P references M and M references N, then P is directly
dependent on M. In the same case, P and N share indirect dependency. Schema
objects can refer tables, views, sequences, procedures, functions, packages
speciication, triggers, and synonyms in their deinitions and can behave as
both dependent and referenced objects. Out of these, a sequence can appear as a
referenced object only, while package body can only be a dependent object.

Displaying the direct and indirect

dependencies
The dependency matrix is automatically generated and maintained by the Oracle
server. The status of an object is the basis of dependency among the objects. The
status of an object can be queried from the USER_OBJECTS view. The following
query displays the status of our previously created functions:

/*Check the status of the function F_GET_DOUBLE*/

SQL> SELECT STATUS

 FROM USER_OBJECTS

 WHERE OBJECT_NAME='F_GET_DOUBLE';

STATUS

VALID

DEPTREE and IDEPTREE are two views which capture and store necessary information
about the direct and indirect dependencies, respectively. The views are created by a
DBA by running the script from $ORACLE_HOME\RDBMS\ADMIN\utldtree.sql

The execution steps for the script are as follows:

1. Login as SYSDBA in SQL Developer or SQL*Plus.

2. Copy the complete path and script name (preix with @).

3. Execute the script (with F9).

4. Query the DEPTREE and IDEPTREE views to verify their creation.

The script creates the DEPTREE_TEMPTAB table and the DEPTREE_FILL procedure. The
DEPTREE_FILL procedure can be executed as follows, to populate the dependency
details of an object:

/*Populate the dependency matrix for the function F_GET_DOUBLE*/

SQL> EXEC DEPTREE_FILL('FUNCTION','ORADEV','F_GET_DOUBLE');

PL/SQL procedure successfully completed.

www.allitebooks.com

http://www.allitebooks.org

Overview of PL/SQL Programming Concepts

[50]

Note that the irst parameter of the DEPTREE_FILL procedure is the object
type, second is the owner and third is the object name.

Then, the DEPTREE and IDEPTREE views can be queried to view the
dependency information.

Dependency metadata
Oracle provides the data dictionary views, namely, USER_DEPENDENCIES,
ALL_DEPENDENCIES, and DBA_DEPENDENCIES, to view complete dependency
metrics shared by an object. Besides the dependent object's list, it also lists its
referencing object name and owner.

The following screenshot shows the structure of the dictionary view
DBA_DEPENDENCIES:

Dependency issues and enhancements
As per the conventional dependency phenomenon, the status validity of the
dependent object depends upon the status of the referenced object. So, if the
deinition of the referenced object is altered, the dependent object is marked
INVALID in the USER_OBJECTS view. Though the object recompilation can easily
solve the problem, it becomes a serious hindrance in working of the object
validations. Dependent objects are used to fall prey to their own dependency
matrix. They are rendered invalidated even if the change is not for them.

Oracle 11g brings in a fundamental change in dependency management, known
as Fine Grained Dependency (FGD). The FGD concept modiies the dependency
principle as if the alteration in the referenced object does not affect the dependent object, the
dependent object would remain in VALID state. The new principle was received well
amongst the community as it shifted the granularity from object level to element
level. For instance, if a view is created with selected columns of a table and the table
is altered to add a new column, the view shall remain in a valid state.

Chapter 1

[51]

Reviewing Oracle-supplied packages
Oracle-supplied packages are provided by the Oracle server and inbuilt in the
database as a wrapper code. These packages not only facilitate the database
programmers to work on extended functionalities but also reduce writing
extensive and complex code. Use of Oracle-supplied API is always recommended
as it improves the code standardization, too.

The scripts for these packages are available in the $ORACLE_HOME\RDBMS\ADMIN\
folder. All packages reside on the database server. Public synonyms are available for
these packages so that these packages are accessible to all users. Until Oracle 11g,
more than 1000 packages were available and this count tends to increase with every
database release.

Some of the important packages are listed as follows:

•	 DBMS_ALERT: This package is used for notiication of database events
•	 DBMS_LOCK: This package is used for managing the lock operations (lock,

conversion, release) in PL/SQL applications

•	 DBMS_SESSION: This package is used to set session level preferences from
PL/SQL programs (similar to ALTER SESSION)

•	 DBMS_OUTPUT: This package is one of the most frequently used built ins for
buffering of data messages and display debug information

•	 DBMS_HTTP: This package is used for HTTP callouts

•	 UTL_FILE: This package is used for reading, writing and other ile operations
on the server

•	 UTL_MAIL: This package is used to compose and send mails

•	 DBMS_SCHEDULER: This package is used for scheduling execution of stored
procedures at a given time

Based on the objective achieved, the packages can be categorized as follows:

•	 Standard application development: DBMS_OUTPUT is the most frequently
used package to display the required text. It is used for tracing and
debugging purposes. Accessing and writing OS iles was made possible
through UTL_FILE. Similarly, system dependent binary iles are accessed
through the DBMS_LOB package.

Overview of PL/SQL Programming Concepts

[52]

The Oracle supplied packages often try to access SQL features which is their
other big advantage.

•	 General usage and application administration: The Oracle server has
many packages to monitor the applications and users. Stats generation, load
history, and space management are the key objectives accomplished by
these packages

•	 Internal support packages: Oracle maintains these packages for its own use.

•	 Transaction processing packages: Oracle provides utility packages which
enables the monitoring of transaction stages. Though they are rarely used,
but could eficiently ensure transparent and smooth transactions. For
example, DBMS_TRANSACTION.

Among these categories, standard application development packages are the most
frequently used ones.

Summary
We toured the fundamentals of PL/SQL programming. Starting with a small
lashback on evolution of PL/SQL, we understood its working with Oracle
Development tools such as SQL Developer and SQL*Plus.

We had an overview of cursor handling and major Oracle schema objects such as
procedures, functions, and packages. Thereafter, we refreshed the error management
in PL/SQL through exception handlers using server-deined, user-deined, and
dynamic exceptions.

In the upcoming chapters, we will discuss programming guidelines and advanced
PL/SQL concepts in details. In the next chapter, we will cover cursor handling in
detail and usage guidelines for various types of cursors.

Practice exercise
1. Which of the following features are not available in SQL Developer?

a. Query builder

b. Database export and import

c. Database backup and recovery functions

d. Code Subversion repository

Chapter 1

[53]

2. For a function to be called from the SQL expression, which of the following
conditions should it obey:

a. A function in the SELECT statement should not contain
DML statements.

b. The function should return a value.

c. A function in the UPDATE or DELETE statement should not query
the same table.

d. A function called from SQL expressions cannot contain
the TCL (COMMIT or ROLLBACK) command or the DDL
(CREATE or ALTER) command.

3. The following query is executed in the ORADEV schema:

 SELECT NAME, referenced_owner, referenced_name

 FROM all_dependencies

 WHERE owner = USER

 AND referenced_type IN ('TABLE', 'VIEW')

 AND referenced_owner IN ('SYS')

 ORDER BY owner, NAME, referenced_owner, referenced_name;

Which statement is true about the output of this query?

a. It displays the schema objects created by the user ORADEV which use a
table or view owned by SYS.

b. Exception occurs as user ORADEV has insuficient privileges to access
ALL_DEPENDENCIES view.

c. It displays all PL/SQL code objects that reference a table or view
directly for all the users in the database.

d. It displays only those PL/SQL code objects created by the user OE
that reference a table or view created by the user SYS.

4. Which of the following is true about PL/SQL blocks?

a. Exception is a mandatory section without which an anonymous PL/
SQL block fails to compile.

b. Bind variables cannot be referred inside a PL/SQL block.

c. The scope and visibility of the variables declared in the declarative
section of the block is within the current block only.

d. The RAISE_APPLICATION_ERROR procedure maps a predeined error
message to a customized error code.

Overview of PL/SQL Programming Concepts

[54]

5. From the following options, identify the ways of deining exceptions:
a. Declare a EXCEPTION variable and raise it using the RAISE statement.

b. Use PRAGMA EXCEPTION_INIT to associate a customized exception
message to a pre-deined Oracle error number.

c. Declare a EXCEPTION variable and use it in
RAISE_APPLICATION_ERROR.

d. Use RAISE_APPLICATION_ERROR to create a dynamic exception at any
stage within the executable or exception section of a PL/SQL block.

6. Chose the differences between procedures and functions:

a. A function must mandatorily return a value, while a procedure may
or may not.

b. A function can be called from SQL queries, while a procedure can
never be invoked from SQL.

c. A function can accept parameters passed by value, while a procedure
can accept parameters as passed by reference only.

d. A standalone function can be overloaded but a procedure cannot.

7. Examine the values of the cursor attribute for the following query and pick
the attribute with the wrong value:

 BEGIN

 …

 SELECT ENAME, SAL

 INTO L_ENAME, L_SAL

 FROM EMPLOYEES

 WHERE EMPID = 7900;

 …

 END;

a. SQL%ROWCOUNT = 1

b. SQL%ISOPEN = FALSE

c. SQL%FOUND = FALSE

d. SQL%NOTFOUND = FALSE

Designing PL/SQL Code
The PL/SQL code construction can accommodate SQL to interact with the Oracle
database for transactions or data retrieval. The data operations and activities such
as iteration, comparison or manipulation is one of the major accomplishments of
PL/SQL control structures. In a PL/SQL block, the data fetch strategy is realized
through cursor structures. The design and handling of cursor structures forms the
basis of the PL/SQL code design. In this chapter, we will understand the cursor
structures in detail, their types and implementation along with some best practices.
This chapter covers the following topics:

•	 Cursor fundamentals

	° Cursor execution cycle

	° Cursor design guidelines

	° Cursor attributes

	° Overview of implicit cursor and explicit cursor

•	 Cursor variables

•	 Introduction to subtypes

Understanding cursor structures
Cursor structures in PL/SQL allow the data access for a row or set of rows. Every
SQL statement executed from PL/SQL is processed as a cursor. For all the SQL
statements encountered by the PL/SQL engine, the Oracle server assigns a chunk of
memory, privately held in SGA, for processing the statement. A cursor is a constant
pointer to this work area in the memory which is also termed as context area. This
context area contains the complete processing information of the SQL statement. It
includes the SQL query, its parsing information, and the data set pulled out from the
database tables. Even, the cursor structure captures the relevant information of the
context-area activities as cursor attributes.

Designing PL/SQL Code

[56]

There are number of methods to act and access upon this work area. These methods
are as follows:

•	 Implicit cursors: Every SQL query in the executable section of a PL/SQL
block is executed as an implicit cursor by Oracle. The SQL statement can
be a SELECT statement or a DML statement.

•	 Explicit cursors: Only the SELECT statements, which are physically named
and declared by the user in the declaration section, are explicit cursors. A
user has full control on their execution cycle.

•	 Cursor variables: A variable of cursor type allows program units to share
data sets as parameters and variables.

•	 Cursor expressions: REF cursors usually make use of cursor expressions to
dynamically associate the query to it.

•	 Dynamic SQL: Dynamic SQL provide the execution of all SQL queries
during runtime. Unlike explicit cursors or cursor variables, dynamic SQL can
work with DML statements, too.

As per the scope of the chapter, we will cover implicit cursor, explicit cursor, and
cursor variables.

Cursor execution cycle
The cursor execution cycle involves the stages which describe the processing of the
SQL query associated with the cursor. This execution cycle remains common for all
types of cursors in PL/SQL. In case of implicit cursors, the Oracle server takes care of
these steps. But for explicit cursors, the user has full control on these stages.

Cursors cannot be stored in the database; instead they enjoy their
life within the scope of a session. For this reason, they are often

marked as session cursors.

The stages of cursor execution cycle are summarized as follows:

•	 OPEN: The Oracle server allocates a portion of private memory of the server
process which is available for this session. The allocated memory would
be used for SQL statement processing. It is in this stage when the cursor
points to a speciic memory location. Prior to this stage, the cursor acts as
a null pointer variable.

•	 PARSE: It is the starting step of SQL processing where the SQL statement is
checked for the syntax, object status, and optimization.

Chapter 2

[57]

•	 BIND: If the SQL statement requires additional input values, the placeholders
created for them are replaced by the actual values (either from the program
or from the available bind parameters, if any).

•	 EXECUTE: The SQL engine executes the SQL statement, fetches the data
result set from the database, and sets the record pointer on the irst record
of the set.

•	 FETCH: Fetch the record from the result set corresponding to the current
position of the record pointer. The record pointer leaps forward by one step
after each successful fetch.

•	 CLOSE: The cursor is closed and the context area is lushed off. The memory
is released back to the server and, hence, no reference to the last result set can
be made. If you skip this step, the PL/SQL engine implicitly performs the
close operation after exiting the block.

Cursor design considerations
The factors to consider for the cursor design are as follows:

•	 Data required from the database: A SELECT query fetching single record
should be made an implicit cursor instead of an explicit cursor.

Steven Feuerstein, a renowned Oracle expert, writes in his book, Oracle PL/
SQL Programming (ifth edition) regarding the encapsulation and exposure of
implicit cursor queries:

You should always encapsulate your single-row query, hiding the query behind
a function interface, and passing back the data through the RETURN clause.

•	 Cursor usability and scalability in the program: The explicit cursor design
depends on the cursor's role in the PL/SQL block. It can be a conventional
one, if the role of the cursor is purely a data source in the block. It can be
made a parameterized one, if the same data source has to be accessed for
varying inputs in the query predicate.

Parameterized cursors enhance the reusability of the cursor. For example,
consider the following code snippet:

 /*Cursor to select employees who have joined before 01st Jan
1985*/

 CURSOR cur IS

 SELECT ename, deptno

 FROM employees

 WHERE hiredate < TO_DATE('01-01-1985','DD-MM-YYYY');

Designing PL/SQL Code

[58]

The preceding code can be rewritten as:

 /*Cursor to select employees who have joined before the input
date parameter*/

 CURSOR cur (p_date VARCHAR2) IS

 SELECT ename, deptno

 FROM employees

 WHERE hiredate < p_date;

•	 Usage of cursor variables: If the cursor role has to be of a data source in
different scenarios within a single block, ref cursors must be used. As we
understood, an explicit cursor is a constant pointer to a view created by the
SELECT statement. If the view via the SELECT statement has to be different
upon each invocation, ref cursors provide the best solution. Cursor variables
act like an actual pointer variable which can refer to different cursor objects.
Cursor variables can be well used as arguments to subprograms especially
while passing result sets from a database to client environments.

Cursor design—guidelines
We have already seen the multiple ways for framing a SQL statement in a cursor.
The same results can be achieved with the use of an explicit or parameterized cursor
and even with cursor variables. The appropriate strategy can be followed depending
on the usage and application demanding in the program.

Certain recommendations to be followed during cursor design and handling
are as follows:

•	 If the SELECT statement associated with the explicit cursor requires
substitutable inputs in the WHERE clause, a parameterized cursor must be
preferred over an explicit cursor. It extends the reusability of the cursor and
reduces erratic hard coding in the program. It can be opened multiple times
in the block or nested blocks for different values of input arguments.

•	 One must follow the complete execution cycle of the cursor. The cursor must
be opened, accessed, and closed. If it is not closed, the allocated memory
remains busy and, thus, the program memory reduces. It is released only
when the block is terminated.

•	 Except for %ISOPEN, all the cursor attributes must be addressed within the
same cursor execution cycle. Similarly, for implicit cursors, the attributes
must be accessed just after the SQL statement as they might reset later for
other SQL statements.

Chapter 2

[59]

•	 Use of %ROWTYPE must be encouraged to fetch a record from the cursor result
set. It not only reduces the overhead of creating and maintaining multiple
local variables but also inherits the structure of the SELECT column list. For
example, consider the following code snippet:

 /*Cursor to select employees with its annual salary*/

 CURSOR cur_dept IS

 SELECT ename, deptno, (sal*12) annual_sal

 FROM employees;

 l_cur_dept cur_dept%ROWTYPE;

•	 Note that the columns which are created virtually for calculative purposes
must have an alias name for reference through the record variable.

•	 A cursor FOR loop associates a cursor with the FOR loop construct. It is one
of the strongest features of PL/SQL which simpliies the code writing. It
implicitly takes care of all the stages of cursor execution such as OPEN, FETCH,
or CLOSE and minimizes the erroneous handling.

/*Demonstrate working with cursor FOR loop*/

DECLARE

CURSOR cur_dept IS

 SELECT ename, deptno

 FROM employees;

BEGIN

 FOR c IN cur_dept

 LOOP

 …

 END LOOP;

END;

Cursor attributes
As I stated earlier, the cursor structure retains the relevant information of the context
area's processing activities. This information is stored as cursor attributes. These
attributes are %ROWCOUNT, %ISOPEN, %FOUND, and %NOTFOUND.

%BULK_ROWCOUNT and %BULK_EXCEPTIONS are the additional
cursor attributes used in bulk processing using the FORALL statement.

These attributes must be accessed by preixing their respective explicit cursor name.
For example, cur_emp%ROWCOUNT returns the rows selected by the cursor cur_emp.
As implicit cursors don't have any name, a keyword SQL must be preixed to access
attributes for implicit cursors, as in SQL%FOUND or SQL%NOTFOUND.

Designing PL/SQL Code

[60]

The cursor attributes are briely explained as follows:

•	 %ROWCOUNT: This attribute answers the question—"how many"—of the cursor
processing. It returns the number of rows fetched or affected by the SQL
statement in the context area. In the OPEN stage of the cursor, the attribute
is initialized with zero. During the FETCH stage, the value of the %ROWCOUNT
attribute increments parallel to the record pointer in the result set, that means
it increases by one for each forward movement. Once the FETCH stage is over,
the attribute holds the inal number of rows fetched or affected by the cursor
SQL statement.

Note that the attribute must be addressed within the cursor execution
cycle that is within the OPEN and CLOSE stages of a cursor or else it raises
the INVALID_CURSOR exception.

•	 %ISOPEN: This attribute is set to TRUE if the cursor has already entered the
OPEN stage, otherwise it is FALSE. It is often used in the programs to make
sure that no action should be taken on the cursor without opening it.

Unlike other attributes, it can be referenced outside the cursor
execution cycle.

•	 %FOUND: This attribute reveals whether the current position of the record
pointer points to a valid record or not. If it points to a record in the record
set, it returns TRUE. If the last record of the result set is reached and a further
request for fetch is made, the attribute returns FALSE.

Again, the attribute must be addressed within the cursor execution cycle or
else it raises a INVALID_CURSOR exception.

•	 %NOTFOUND: This attribute is just the reverse of the%FOUND attribute. The
%NOTFOUND attribute also returns the status of the last fetch request and set to
FALSE, if the fetch request returns a record from the data set. It returns TRUE
when the last record is reached and a request for fetch is made.

The attribute must be addressed within the cursor execution cycle or else it
raises the INVALID_CURSOR exception.

Implicit cursors
The SQL statements in the executable section of a PL/SQL block are treated
as implicit cursors by the Oracle server. The Oracle server takes end to end
responsibility of their processing such cursor opening, memory allocation, fetching,
and closing the cursor. The SQL statement liable to be an implicit cursor can be
SELECT, INSERT, UPDATE, and DELETE.

Chapter 2

[61]

While the SELECT statement involved in the implicit cursor must return a single row,
the DML operations might affect multiple rows of a table.

The executable section of the following block contains a SELECT and a UPDATE
statement. Both, the SELECT and UPDATE statements are processed as different
implicit cursors by PL/SQL. The programmer has no control over any stage of the
cursor execution cycle except the cursor attributes:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SET SERVEROUTPUT ON

/*Demonstrate implicit cursors in PL/SQL execution block*/

DECLARE

 l_ename employees.ename%TYPE;

 l_sal employees.sal%TYPE;

BEGIN

/*Select name and salary of employee 7369. Oracle creates an
implicit cursor to execute it*/

 SELECT ename, sal

 INTO l_ename, l_sal

 FROM employees

 WHERE empno = 7369;

 DBMS_OUTPUT.PUT_LINE('Rows returned from SELECT:'||SQL%ROWCOUNT);

/*Update the salary of employee 7369. Oracle recreates an implicit
cursor to execute it*/

 UPDATE employees

 SET sal = l_sal + 1000

 WHERE empno = 7369;

 DBMS_OUTPUT.PUT_LINE('Rows updated from UPDATE:'||SQL%ROWCOUNT);

END;

/

Rows returned from SELECT:1

Rows updated from UPDATE:1

PL/SQL procedure successfully completed.

Designing PL/SQL Code

[62]

The information about the last executed SQL statement can be checked by querying
the cursor attributes. Let us check out these attributes for implicit cursors:

Cursor attributes Description

SQL%FOUND This attribute returns TRUE if SELECT fetches a single
record or DML statement affects a minimum one record of
the table. Otherwise it is set as FALSE

SQL%NOTFOUND This attribute returns TRUE if SELECT…INTO fetches no
row from the database that is NO_DATA_FOUND exception
would be raised.

SQL%ROWCOUNT This attribute returns 1 for the SELECT statement and the
number of rows affected by the DML statement.

SQL%ISOPEN This is a redundant attribute for implicit cursors. It is
always set as FALSE.

Explicit cursors
Explicit cursors go exactly with their name—they are explicitly handled by the
user. An explicit cursor requires its prototype declaration and manually operated
execution cycle. This authoritative control over the cursor execution cycle has made
explicit cursors the hallmark of PL/SQL coding.

Explicit cursors can accommodate only the SELECT statements; no DML statements
are allowed. Unlike, an implicit cursor, an explicit cursor prototype has to be given
in the DECLARE section with a valid cursor name. During its declaration, the cursor
is similar to a pointer. The cursor execution cycle can be observed in the executable
section of the PL/SQL block. The steps in the cursor execution cycle involve opening
the cursor (OPEN), iterating through the result set and fetching the records (FETCH),
and closing the cursor (CLOSE). For each stage, the Oracle server performs the
following operations:

•	 OPEN stage

	° Open cursor: Allocate and open a work area in memory for cursor
processing

	° Parse SQL: Check the SQL query for syntax, object status, and
optimization

	° Bind SQL: Check for the inputs required by the SQL along with their
replacements

	° Execute query: Execute the parsed SQL statement to pull the data
from the database and move the pointer to the irst record of the
data set

Chapter 2

[63]

•	 FETCH stage

	° Fetch result: Iterate the data set for each fetch request. Fetch the data
into block variables (or record) and move the result set pointer to the
next record.

•	 CLOSE stage

	° Close cursor: Close the cursor and release the memory back to SGA

The following diagram demonstrates a fetch operation in a cursor execution cycle:

DECLARE

CURSOR cur IS

SELECT *

FROM employees;

l_emp employees%ROWTYPE;

BEGIN

OPEN cur;

LOOP

FETCH cur

INTO l_emp;

END LOOP;

CLOSE cur;

END;

Fetch request

Data fetched

into a record

SELECT * FROM employees

Shared Memory

xx

xx

xx

xx

xx

xx

xx

xx

xx

Cursor Work area

Database

EMPLOYEES

Let us examine the syntax followed for declaring and controlling the execution cycle
of an explicit cursor:

DECLARE

 CURSOR [Cursor Name] [Parameters]

 RETURN [Return type]

 IS

 [SELECT statement];

BEGIN

 OPEN [Cursor Name];

 FETCH…INTO [Cursor into a];

 CLOSE [Cursor Name];

END;

Designing PL/SQL Code

[64]

In the syntax, [Cursor Name] is any valid cursor name. Naming convention for
cursors is same as that of identiiers. Thereafter, the cursor shall be referenced
with the same name. Parameters are required in parameterized explicit cursors.
The argument value would be used as input to the SELECT statement. RETURN is
the optional clause for strong cursors, where the return type of the cursor is ixed.
[SELECT statement] is any valid SQL SELECT statement. Make sure, no DMLs
are allowed.

Here are a few examples for reference. You can observe that the same cursor is
rewritten in different formats.

In the following code snippet, the cursor CUR_EMP is the simplest explicit cursor
which selects the employees working in department number 10:

/*Cursor definition to fetch employee data working in department
10*/

CURSOR CUR_EMP IS

 SELECT *

 FROM employees

 WHERE deptno = 10;

The same cursor can be parameterized as follows:

/*Cursor definition to fetch employee data working in input
department parameter*/

CURSOR CUR_EMP (P_DEPTNO NUMBER)

IS

 SELECT *

 FROM employees

 WHERE deptno = P_DEPTNO;

Even the optional RETURN statement can be added to the above cursor, as shown in
the following code snippet:

/*Cursor definition to fetch employee data working in input
department parameter and return type as the employee record
structure*/

CURSOR CUR_EMP (P_DEPTNO NUMBER)

RETURN employees%ROWTYPE

IS

 SELECT *

 FROM employees

 WHERE deptno = P_DEPTNO;

Chapter 2

[65]

The following PL/SQL block selects the details for the irst two employees, based on
their salary (note the usage of cursor attributes in the executable section):

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SET SERVEROUTPUT ON

DECLARE

/*Declare a cursor to select top 2 highest paid employees*/

 CURSOR cur_emp

 IS

 SELECT empno, ename, hiredate, sal

 FROM

 (SELECT empno, ename, hiredate, sal,

 ROW_NUMBER() OVER (PARTITION BY 1 ORDER BY sal DESC) RN

 FROM employees)

 WHERE RN < 3;

 l_empno employees.empno%TYPE;

 l_ename employees.ename%TYPE;

 l_doj employees.hiredate%TYPE;

 l_sal employees.sal%TYPE;

BEGIN

/*Open the cursor*/

 OPEN cur_emp;

 LOOP

/*Fetch the cursor select column list into local variables*/

 FETCH cur_emp INTO l_empno, l_ename, l_doj, l_sal;

 EXIT WHEN cur_emp%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE('Employee details for '||l_ename);

 DBMS_OUTPUT.PUT_LINE('Employee Number: '||l_empno);

 DBMS_OUTPUT.PUT_LINE('Date of joining: '||l_doj);

 DBMS_OUTPUT.PUT_LINE('Salary: '||l_sal);

 DBMS_OUTPUT.PUT_LINE(CHR(10));

 END LOOP;

/*Close the cursor*/

 CLOSE cur_emp;

END;

/

Employee details for SMITH

Employee Number: 7369

Date of joining: 17-DEC-80

Salary: 800

Designing PL/SQL Code

[66]

Employee details for ALLEN

Employee Number: 7499

Date of joining: 20-FEB-81

Salary: 1600

PL/SQL procedure successfully completed.

Cursor attributes play a vital role while traversing through the explicit cursor
execution cycle. The attributes are automatically set at each stage and the
following table shows the behavioral low:

Event %FOUND %NOTFOUND %ISOPEN %ROWCOUNT

Before OPEN Exception Exception FALSE Exception

After OPEN NULL NULL TRUE 0

Before irst FETCH NULL NULL TRUE 0

After irst FETCH TRUE FALSE TRUE 1

Before next FETCH TRUE FALSE TRUE 1

After next FETCH TRUE FALSE TRUE n + 1

Before last FETCH TRUE FALSE TRUE n + 1

After last FETCH FALSE TRUE TRUE n + 1

Before CLOSE FALSE TRUE TRUE n + 1

After CLOSE Exception Exception FALSE Exception

Cursor variables
Cursor variables provide a unique service to refer to different context areas in SGA
as they can be associated to more than one SELECT statement in the same block.
While static cursors remain stuck to a single static SELECT, cursor variables purely
act like a pointer variable. At runtime, the pointer can be moved to point to different
work areas having different SELECT statements and hence, different result sets.

Chapter 2

[67]

By virtue of their behavior, a cursor variable differs from a static cursor. Static
cursors have the life cycle of only one SQL processing, but cursor variables can live
for many SQL statements. Once the processing under a work area is inished, they
are ready to move on and point to a different work area. Cursors cannot be passed as
arguments, but cursor variables can pass the result sets to other programs and even
client environments. These indifferent properties make cursor variables a robust and
lexible code feature in PL/SQL.

Cursor variables can be very handy in improving performance while communicating
from server to the client. In a single round trip, multiple cursor variables, hence
multiple memory references, can be sent to the client environments:

SELECT 1 SELECT 2 SELECT 3 SELECT 4

Cursor variable is a pointer variable

which can point multiple work areas and

is linked to different SELECT statements

during runtimeTYPE cur is REF CURSOR;

cur_emp cur;

In Oracle, cursor variables exist in the form of ref cursors that is, reference to a
cursor. A variable can be declared as the REF CURSOR type to point to a context
area in SGA.

As cursor variables have to be opened explicitly, they are
not supported with cursor FOR loops. cursor FOR loops
are exclusively supported for explicit cursors only.

A REF CURSOR follows the following syntax:

DECLARE

TYPE [CURSOR VARIABLE NAME] IS REF CURSOR [RETURN (return type)]

In the preceding syntax, the RETURN type of a cursor variable must be a record type.
It is required in strong ref cursors to ix the return type of the result set.

Designing PL/SQL Code

[68]

In the example code shown as follows, the PL/SQL block declares a ref cursor as a
cursor type and a subsequent cursor variable. Observe the capabilities of a cursor
variable to be opened more than once in the program.

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SET SERVEROUTPUT ON

DECLARE

/*Declare a REF cursor type*/

 TYPE C_REF IS REF CURSOR;

/*Declare a Cursor variable of REF cursor type*/

 CUR C_REF;

 l_ename employees.ename%TYPE;

 l_sal employees.sal%TYPE;

 l_deptno departments.deptno%TYPE;

 l_dname departments.dname%TYPE;

BEGIN

/*Open the cursor variable for SELECT statement*/

 OPEN cur FOR SELECT ename, sal

 FROM employees

 WHERE ename='JAMES';

 FETCH cur INTO l_ename, l_sal;

 CLOSE cur;

 DBMS_OUTPUT.PUT_LINE('Salary of '||L_ENAME||' is '||L_SAL);

/*Reopen the same cursor variable for second SELECT statement*/

 OPEN cur FOR SELECT deptno, dname

 FROM departments

 WHERE loc='DALLAS';

 FETCH cur INTO l_deptno, l_dname;

 CLOSE cur;

 DBMS_OUTPUT.PUT_LINE('Department name '||l_dname ||' for '||l_
deptno);

END;

/

Salary of JAMES is 950

Department name RESEARCH for 20

PL/SQL procedure successfully completed.

Chapter 2

[69]

Ref cursor types—strong and weak
A ref cursor can be either of a strong or weak type.

A ref cursor can be made strong if its return type is ixed during the prototype. The
RETURN clause makes the ref cursor restrictive upon the SQL query statement being
associated to it. Additionally, in a large application environment, such cursors are
less error prone and set the application standards. The return type of a cursor must
always be of a record type only.

The return type of a cursor can be a record structure of the table or a user-deined
record structure.

For example, a strong ref cursor having a return type record structure of the
employees table:

TYPE c_strong_rf IS REF CURSOR OF employees%ROWTYPE;

Alternatively, a user-deined record can be declared and assigned as the return type
of a strong ref cursor.

For example, the cursor in the following code snippet speciies the structure of the
return type as the structure of a local record:

/*Demonstrate the strong ref cursor where type is a local record
structure*/

DECLARE

 TYPE myrec IS RECORD

 (myname VARCHAR2(10),

 myclass VARCHAR2(10));

TYPE mycur IS REF CURSOR RETURN myrec;

cur_var mycur;

A ref cursor without the return type makes it weak and open to all SELECT
statements. As they provide free-hand association, they are the most frequently used
cursor variables. For example, see the following code:

TYPE c_weak_rf IS REF CURSOR;

SYS_REFCURSOR
SYS_REFCURSOR is an Oracle built-in cursor variable data type which declares a weak
ref cursor variable without declaring the ref pointer type. It is used as a generic
cursor variable and extensively used as an argument for stored subprograms. It
carries data sets across the client environments.

Designing PL/SQL Code

[70]

SYS_REFCURSOR acts like a cursor variable type, as shown in the following syntax:

DECLARE

 [Cursor variable name] SYS_REFCURSOR;

As stated, SYS_REFCURSOR can also be speciied as a parameter type in Oracle
subprograms. It appears as follows:

PROCEDURE P_DEMO (P_DATA OUT SYS_REFCURSOR)

IS

…

END;

Processing a cursor variable
The process and execution life cycle of a cursor variable resembles the same as that of
an explicit cursor.

Let us recapitulate the execution cycle with the help of an example.

The following program displays the grades of all employees based on their salary
(the highlighted sections represent the DECLARE, OPEN, FETCH, and CLOSE stages):

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SET SERVEROUTPUT ON

DECLARE

/*Define a ref cursor type and declare cursor variable*/

 TYPE c_ref IS REF CURSOR;

 cur C_REF;

 l_empno employees.empno%type;

 l_ename employees.ename%type;

 l_deptno employees.deptno%type;

 l_grade salgrade.grade%type;

BEGIN

/*Open the cursor variable for a SELECT query*/

 OPEN cur FOR SELECT e.empno, e.ename, e.deptno, s.grade

 FROM employees e, salgrade s

 WHERE e.sal between s.losal and s.hisal;

 LOOP

/*Iterate and fetch the records from the result set*/

 FETCH cur INTO l_empno, l_ename, l_deptno, l_grade;

 EXIT WHEN cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE('Grade for '||l_ename||'('||l_empno||') is
'||l_grade);

Chapter 2

[71]

 END LOOP;

/*Close the cursor variable*/

 CLOSE cur;

END;

/

Grade for SMITH(7369) is 1

Grade for JAMES(7900) is 1

Grade for ADAMS(7876) is 1

Grade for WARD(7521) is 2

Grade for MARTIN(7654) is 2

Grade for MILLER(7934) is 2

Grade for TURNER(7844) is 3

Grade for ALLEN(7499) is 3

Grade for CLARK(7782) is 4

Grade for BLAKE(7698) is 4

Grade for JONES(7566) is 4

Grade for SCOTT(7788) is 4

Grade for FORD(7902) is 4

Grade for KING(7839) is 5

PL/SQL procedure successfully completed.

Cursor variables as arguments
Very often in a client-based application, data sets are required to be passed from
database to the client environment such as Oracle forms, C++, or Java. One of the
most feasible and easily implementable solutions is the cursor variable. Cursor
variables can appear in a formal parameter list of a procedure or as return type of a
function. Logically, there is no passing of physical data sets over the client but it is
just sharing of a pointer variable. Once an active memory pointer has been shared
among the database programs or other clients, the cursor work area in the memory
and hence, the containing result set can be accessible to all.

For example, the organization asks for the report showing the employees and their
current location. The report has to be shown on the employee portal of the company.
Now, our task is to transfer the information from the database to the client. Let us
write a program to achieve the purpose:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/

SET SERVEROUTPUT ON

/*Create the procedure to demonstrate cursor variable in parameter
list*/

CREATE OR REPLACE PROCEDURE

Designing PL/SQL Code

[72]

p_emp_location (p_emp_data OUT SYS_REFCURSOR)

IS

/*Declare a local ref cursor variable*/

 TYPE cur_emp_rf IS REF CURSOR;

 cur_emp_loc cur_emp_rf;

BEGIN

/*Open the local ref cursor variable for the SELECT query*/

 OPEN cur_emp_loc FOR SELECT e.ename, d.loc

 FROM employees e, departments d

 WHERE e.deptno = d.deptno;

/*Assign the cursor OUT parameter with the local cursor variable*/

 p_emp_data := cur_emp_loc;

END;

/

Procedure created.

/*Declare a host cursor variable in SQLPLUS*/

SQL> VARIABLE M_EMP_LOC REFCURSOR;

/*Execute the procedure P_EMP_LOCATION using the above host cursor
variable*/

SQL> EXEC P_EMP_LOCATION(:M_EMP_LOC);

PL/SQL procedure successfully completed.

/*Print the host cursor variable*/

SQL> PRINT M_EMP_LOC

ENAME LOC

---------- -------------

CLARK NEW YORK

KING NEW YORK

MILLER NEW YORK

JONES DALLAS

FORD DALLAS

ADAMS DALLAS

SMITH DALLAS

SCOTT DALLAS

WARD CHICAGO

TURNER CHICAGO

ALLEN CHICAGO

JAMES CHICAGO

BLAKE CHICAGO

MARTIN CHICAGO

14 rows selected.

Chapter 2

[73]

Cursor variables—restrictions
The following list shows the restrictions on the usage of cursor variables:

•	 Cursor variables cannot be declared as a public construct of a package
speciication. But a ref cursor type can be declared in a package speciication:

/*Demonstrate the restriction listed above*/

CREATE OR REPLACE PACKAGE pkg_dec_public_cursor IS

 cur_public SYS_REFCURSOR;

END;

/

Warning: Package created with compilation errors.

/*List the errors in the last compilation*/

SHOW ERROR

Errors for PACKAGE PKG_DEC_PUBLIC_CURSOR:

LINE/COL ERROR

-------- ---

2/3 PL/SQL: Declaration ignored

2/3 PLS-00994: Cursor Variables cannot be declared as part of
 a package

/*Recreate the package with the ref cursor type prototype*/

CREATE OR REPLACE PACKAGE pkg_dec_public_cursor IS

 TYPE cur_public IS REF CURSOR;

END;

/

Package created.

The preceding example also deduces the fact that the cursor and the cursor
variables are interoperable and mutually exclusive. They must it in the code
appropriately as per the requirement.

•	 Cursor variables cannot be shared across the servers through
remote procedures.

•	 The SELECT query associated to a cursor variable during runtime should not
lock the rows that is, it must not have the FOR UPDATE clause.

Designing PL/SQL Code

[74]

•	 Cursor variables cannot be used to specify the data type for a database
column in a table or collection attribute. It implies that cursor variables
cannot be stored in the database. Instead, they are non persistent pointers
and are available only within a session's scope.

•	 Cursor variables cannot be assigned the NULL value.

Subtypes
The Oracle data type is one of the fundamental concepts of the database. Every
element, or piece of data in the database, has its own basic behavioral pattern, which
is known as data type. An element can be numeric, string, periodic, Boolean or large
object. Scalar data types are the original data types which are not derivatives of any
other types. Scalar data types constitute a family of base types and their subtypes.

PL/SQL is open to all categories of SQL data types. In addition to available SQL data
types, PL/SQL maintains its own data types, most of which are subtypes of SQL data
types. We will extend our discussion on these subtypes now.

The following table shows the base types and subtypes under each scalar data types:

Number Character Date/Time Boolean

NUMBER VARCHAR DATE BOOLEAN

DECIMAL/DEC VARCHAR2 INTERVAL

DOUBLE PRECISION NVARCHAR2 TIMESTAMP

FLOAT CHAR

INTEGER/INT NCHAR

NUMERIC CHARACTER

REAL LONG

SMALLINT LONG RAW

PLS_INTEGER RAW

BINARY_DOUBLE ROWID

BINARY_FLOAT STRING

BINARY_INTEGER UROWID

POSITIVE

POSITIVEN

NATURAL

NATURALN

SIGNTYPE

Chapter 2

[75]

A subtype is a data type evolved from the existing scalar data types. The purpose
of creating subtypes is to customize the primitive data types by constraining some
of the other property features such as nullity, range, or sign. A subtype can be an
unconstrained one too, which can be often used in place of base types to maintain
application standards.

The evolution of subtypes has categorized the scalar data types into super types.
The subtype inherits the behavior of its parent base type and extends it by a
distinguishing feature. For example, NATURALN is a subtype of BINARY_INTEGER
which prevents the entry of nulls and non negative values. Similarly, SIGNTYPE
permits only three ixed values as -1, 0, or 1.

Subtype classiication
Once again, similar to cursors, subtypes can be classiied based on their creator and
mentor. The subtypes can be categorized as predeined and user-deined.

Oracle's predeined subtypes
These are built-in subtypes maintained by the Oracle server. They reside within the
STANDARD package along with the scalar data types.

The following list of the NUMBER base type and subtypes has been compiled from
Oracle's STANDARD package:

/*NUMBER family from STANDARD package*/
type NUMBER is NUMBER_BASE;

subtype FLOAT is NUMBER;

subtype INTEGER is NUMBER(38,0);

subtype INT is INTEGER;

subtype SMALLINT is NUMBER(38,0);

subtype DECIMAL is NUMBER(38,0);

subtype NUMERIC is DECIMAL;

subtype DEC is DECIMAL;

subtype BINARY_INTEGER is INTEGER range '-2147483647'..2147483647;

subtype NATURAL is BINARY_INTEGER range 0..2147483647;

subtype NATURALN is NATURAL not null;

subtype POSITIVE is BINARY_INTEGER range 1..2147483647;

subtype POSITIVEN is POSITIVE not null;

subtype SIGNTYPE is BINARY_INTEGER range '-1'..1;

FLOAT is an unconstrained subtype of NUMBER. The constrained
subtypes such as NATURAL and NATURALN work mostly on the
ranges and nullity.

Designing PL/SQL Code

[76]

User-deined subtypes
Oracle allows the users to create a subtype of their own. User-deined subtypes
aims to create an alias of predeined types or set certain rules on them in regards to
ranges or constraints. It can be created in the DECLARE section of a PL/SQL block
or subprogram:

SUBTYPE [SUBTYPE NAME] IS [PREDEFINED TYPE] [CONSTRAINT | RANGE (range
specification)]

The following PL/SQL block deines a subtype of NUMBER base type which has been
constrained in the range of 1 to 10. As soon as the subtype variable is assigned with
an out-of-range value, the VALUE_ERROR exception is raised.

SQL> DECLARE

/*Create a subtype with value range between 1 to 10*/

 SUBTYPE ID IS BINARY_INTEGER RANGE 1..10;

 L_NUM ID;

 BEGIN

/*Assign a value beyond range*/

 L_NUM := 11;

 END;

 /

DECLARE

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error

ORA-06512: at line 5

The PL/SQL block shows the working of a constrained subtype. Note that the
variable of a not null subtype must be initialized with a deinite default value.
Observe the working of a constrained subtype by equating a NULL variable to it. It
prevents the action by raising an exception against it.

SQL> DECLARE

/*Create a not null constrained subtype with value range between 1 to
10*/

 SUBTYPE ID IS BINARY_INTEGER RANGE 1..10 NOT NULL;

 L_NUM ID := 3;

 L_NULL NUMBER;

 BEGIN

/*Assign NULL to the subtype variable*/

 L_NUM := L_NULL;

 END;

 /

Chapter 2

[77]

DECLARE

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error

ORA-06512: at line 6

Subtypes are beneicial in setting up the standards of large applications where
the data types must be compatible with ANSI/ISO or DB2 data types. They
increase code interactivity, readability, and offer code sampling advantages. The
programmer deines the subtype at higher level. If any change in the behavior of the
data type is identiied, changes can be cascaded by modifying the subtype
deinition at the top level.

Type compatibility with subtypes
This is a quite obvious feature of subtypes that they are interchangeable with their
base types under their service conditions. These service conditions are the constraints
in the subtype deinitions, which must be obeyed during assignment.

In the following program, the SUBTYPE ID is a BINARY_INTEGER whose range
is constrained from 1 to 10. If a NUMBER variable with a value greater than 10 is
assigned to it, Oracle raises the VALUE_ERROR exception:

SQL> DECLARE

/*Create a subtype with value range between 1 to 10. Declare the
subtype variable*/

 SUBTYPE ID IS binary_integer range 1..10;

 L_NUM ID ;

 L_BN BINARY_INTEGER;

 BEGIN

/*Assign a NUMBER variable to SUBTYPE variable*/

 L_NUM := 4;

 L_BN := 15;

 L_NUM := L_BN;

 END;

 /

DECLARE

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error

ORA-06512: at line 8

In this case, reverse assignment is possible because BINARY_INTEGER can accept
numeric values in range of -2147483647 to 2147483647.

Designing PL/SQL Code

[78]

Summary
In this chapter, we discussed the importance of cursor structures in the PL/SQL
code. We understood the working of cursor structures, their execution cycle, design
considerations, and guidelines. We discussed implicit and explicit cursors and
covered the working of cursor variables. Meanwhile, we learnt how cursor variables
are superior to static cursors. At the end, we overviewed the working of subtypes
in Oracle. Subtypes can be a handy feature in large database systems to provide
lexibility and maintenance of data types in a modularized way.

In the next chapter, we shall cover composite data types and understand how
collections can boost PL/SQL code performance and perform data caching.

Practice exercise
1. What are the possible reasons that cause the INVALID_CURSOR exception

to occur?

a. The cursor result set has not been fetched.

b. The cursor does not have parameters.

c. The value of the%ROWCOUNT attribute has been referenced after
closing the cursor.

d. The cursor result set has been fetched into a non matching variable.

2. Identify the guidelines to be considered when designing cursors in a
PL/SQL block:

a. Explicit cursors must be used irrespective of the number of records
returned by the query.

b. Cursor FOR loops must be used as it implicitly takes care of the
OPEN, FETCH, and CLOSE stages.

c. Cursor data must be fetched as a record.

d. Use ROWNUM to index the records in the cursor result sets.

3. While processing DMLs as implicit cursors in the PL/SQL executable block,
implicit cursor attributes can be used anywhere in the block.

a. True

b. False

Chapter 2

[79]

4. From the following, identify the two correct statements about the
REF CURSOR types:

a. Ref cursors are reference pointers to cursor objects

b. REF CURSOR types can be declared in package speciication
c. SYS_REFCURSOR is a strong ref cursor type

d. Cursor variables cannot be used as arguments in stored subprograms

5. The RETURN type for a ref cursor can be declared using %TYPE, %ROWTYPE,
or a user-deined record.
a. True

b. False

6. Which two statements, among the following, are true about cursor variables?

a. Cursor variables can process more than one SELECT statement

b. Cursor variables can be passed as program arguments across subpro-
grams and even to the client end programs

c. A cursor variable can be declared as a public construct in
package speciication

d. Cursor variables can be stored in the database as database columns

7. Similar to static explicit cursors, cursor variables can also be opened
in the FOR loop.

a. True

b. False

8. Which of the following is true while creating subtypes from a table
record structure?

SUBTYPE [Name] IS [TABLE]%ROWTYPE

a. The subtype inherits complete column structure of the record structure

b. The subtype inherits the default values of the database columns
in the table

c. The subtype inherits the index information of the database columns

d. The subtype inherits none except the NOT NULL constraint information
of the database columns

Using Collections
Conceptually, "array" has been a colloquial term in programming glossaries. It refers
to a list of similar elements. In Oracle, an array is known by the name, collection. A
collection consists of a list of elements of the same type, where each element can be
identiied by its index or subscript.

A collection works on the same philosophy as an array, a queue, or a linked list
works. Collections provide wide scope of usability and applications in database
programming. Besides being a performance booster, collections can also be used for
data caching mechanisms in programs. It can also be used as database columns, type
attributes or subprogram parameters. In this chapter, we shall perform a detailed
study on collections, its types and usage in the following topics:

•	 Collections—an overview

	° Categorization

	° Selection of an appropriate collection type

•	 Associative arrays

•	 Nested tables

•	 Varray

•	 Collections—a comparative study

•	 PL/SQL collection methods

•	 Manipulating collection elements

•	 Collection initialization

Using Collections

[82]

Collections—an overview
A collection is a homogeneous single dimensional structure, which constitutes
an ordered set of elements of a similar type. Being a homogeneous structure, all
elements are of the same data type. The structure of the element contains cells
with a subscript. The elements reside in these cells to make the index as their
location information. The subscript or cell index becomes identiication of an
element and is used for its access.

Structure of a collection type, SPORT, is shown in the following diagram. Note the
subscript and elements into it. A new element, GOLF, enters at the last empty location
and is represented as SPORT [6]:

An array of SPORT

CRICKET FOOTBALL BASEBALL HOCKEY TENNIS

1 2 3 4 5 6

SPORT [6]

GOLF

A collection element can be of any valid SQL data type or a user-deined type.
An element of the SQL primitive data type is a scalar value while an element of
the user-deined type is an object type instance. A collection can be used within a
PL/SQL program by declaring a PL/SQL variable of collection type. The local
PL/SQL variable can hold the instances of its collection type. Besides, a database
column in a table can also be of the schema collection type.

The collections in Oracle are strictly one dimensional. They cannot be realized on
two-dimensional coordinates. However, multidimensional arrays can be realized
when the collection has an object type or collection type attribute.

A collection can be bounded or unbounded. Bounded collections can accommodate
a limited number of elements while unbounded collections have no upper limit
for subscripts.

Chapter 3

[83]

Collections provide an eficient way to organize the data in an array or set format
while making the use of object-oriented features. An instance of a nested table or
varray collection type is accessed as an object while the data is still stored in database
columns. Collections can be used to avail data caching in programs and boost up the
performance of SQL operations. On dedicated server connections, a session always
uses User Global Area (UGA), a component of PGA, for collection operations. On
the other hand, for shared server mode, the collection operations are still carried
out in UGA; but UGA is now a part of System Global Area (SGA), thus indirectly
in SGA. This is because in shared server connections, multiple server processes can
affect a session, thus UGA must be allocated out of the SGA.

Categorization
Collections are of two types—persistent and non-persistent. A collection is
persistent if it stores the collection structure and elements physically in the database.
Contrarily, a non-persistent collection is active for a program only that is, maximum
up to a session.

Apart from the preceding categories, a collection can be realized in three formats
namely, associative array, nested table or varray. This categorization is purely based
on their objective and behavioral properties in a PL/SQL program. The following
diagram combines the abstract and physical classiication of collections:

Nested Tables

Varrays

Associative arrays

Persistent

Collections

Non Persistent

Collections

We will take a quick tour of these collection types now and discuss them in detail in
the coming sections:

•	 Associative array (index-by table): This is the simplest form of non-
persistent unbounded collections. As a non-persistent collection, it cannot be
stored in the database, but they are available within a PL/SQL block only.
The collection structure and data of associative array cannot be retained
once the program is completed. Initially, during the days of Oracle 7, it was
known as PL/SQL tables. Later, Oracle 8 version released it as index-by
tables as they used an index to identify an element.

Using Collections

[84]

•	 Nested table: This is a persistent form of unbounded collections which can
be created in the database as well as in PL/SQL block.

•	 Varray (variable-size array): This is a persistent but bounded form of
collection which can be created in the database as well as in PL/SQL. Similar
to a nested table, a varray is also a unidimensional homogeneous collection.
The collection size and storage scheme are the factors which differentiate
varrays from nested tables. Unlike a nested table, a varray can accommodate
only a deined (ixed) number of elements.

Selecting an appropriate collection type
Here are a few guidelines to decide upon the appropriate usage of collection
types in programs:

Use of associative arrays is required when:

•	 You have to temporarily cache the program data in an array format for
lookup purpose.

•	 You need string subscripts for the collection elements. Note that it supports
negative subscripts, too.

•	 Map hash tables from the client to the database.

Use of nested tables is preferred when:

•	 You have to stores data as sets in the database. Database columns of nested
table type can be declared to hold the data persistently.

•	 Perform major array operations such as insertion and deletion, on a large
volume of data.

Use of varrays is preferred when:

•	 You have to store calculated or predeined volume of data in the database.
Varray offers limited and deined storage of rows in a collection.

•	 Order of the elements has to be preserved.

Associative arrays
Associative arrays are analogous to conventional arrays or lists which can be deined
within a PL/SQL program only. Neither the array structure nor the data can be stored
in the database. It can hold the elements of a similar type in a key-value structure
without any upper bound to the array. Each cell of the array is distinguished by its
subscript, index, or cell number. The index can be a number or a string.

Chapter 3

[85]

Associative arrays were irst introduced in Oracle 7 release as PL/SQL tables to
signify its usage within the scope of a PL/SQL block. Oracle 8 release identiied the
PL/SQL table as Index by table due to its structure as an index-value pair. Oracle
10g release recognized the behavior of index by tables as arrays so as to rename it as
associative arrays due to association of an index with an array.

The following diagram explains the physical lookup structure of an associative array:

Associative array

1

2

3

b

a

c

INDEX BY BINARY_INTEGER INDEX BY VARCHAR2

Associative arrays follow the following syntax for declaration in a PL/SQL
declare block:

TYPE [COLL NAME] IS TABLE OF [ELEMENT DATA TYPE] NOT NULL

 INDEX BY [INDEX DATA TYPE]

In the preceding syntax, the index type signiies the data type of the array subscript.
RAW, NUMBER, LONG-RAW, ROWID, and CHAR are the unsupported index data types.
The suited index types are BINARY_INTEGER, PLS_INTEGER, POSITIVE, NATURAL,
SIGNTYPE, or VARCHAR2.

The element's data type can be one of the following:

•	 PL/SQL scalar data type: NUMBER (along with its subtypes), VARCHAR2 (and its
subtypes), DATE, BLOB, CLOB, or BOOLEAN

•	 Inferred data: The data type inherited from a table column, cursor expression
or predeined package variable

•	 User-deined type: A user deined object type or collection type

For illustration, the following are the valid conditions of the associative array in a
PL/SQL block:

/*Array of CLOB data*/

TYPE clob_t IS TABLE OF CLOB

INDEX BY PLS_INTEGER;

/*Array of employee ids indexed by the employee names*/

TYPE empno_t IS TABLE OF employees.empno%TYPE NOT NULL

INDEX BY employees.ename%type;

Using Collections

[86]

The following PL/SQL program declares an associative array type in a PL/
SQL block. Note that the subscript of the array is of a string type and it stores the
number of days in a quarter. This code demonstrates the declaration of an array and
assignment of the element in each cell and printing them. Note that the program uses
the FIRST and NEXT collection methods to display the array elements. The collection
methods would be covered in detail in the PL/SQL collection methods section:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a collection type associative array and its variable*/

 TYPE string_asc_arr_t IS TABLE OF NUMBER

 INDEX BY VARCHAR2(10);

 l_str string_asc_arr_t;

 l_idx VARCHAR2(50);

BEGIN

/*Assign the total count of days in each quarter against each cell*/

 l_str ('JAN-MAR') := 90;

 l_str ('APR-JUN') := 91;

 l_str ('JUL-SEP') := 92;

 l_str ('OCT-DEC') := 93;

 l_idx := l_str.FIRST;

 WHILE (l_idx IS NOT NULL)

 LOOP

 DBMS_OUTPUT.PUT_LINE('Value at index '||l_idx||' is '||l_str(l_
idx));

 l_idx := l_str.NEXT(l_idx);

 END LOOP;

END;

/

Value at index APR-JUN is 91

Value at index JAN-MAR is 90

Value at index JUL-SEP is 92

Value at index OCT-DEC is 93

PL/SQL procedure successfully completed.

In the preceding block, note the string indexed array. A string indexed array
considerably improves the performance by using indexed organization of array
values. In the last block, we noticed the explicit assignment of data.

Chapter 3

[87]

In the following program, we will try to populate the array automatically in the
program. The following PL/SQL block declares an associative array to hold the
ASCII values of number 1 to 100:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL Block*/

DECLARE

/*Declare an array of string indexed by numeric subscripts*/

 TYPE ASCII_VALUE_T IS TABLE OF VARCHAR2(12)

 INDEX BY PLS_INTEGER;

 L_GET_ASCII ASCII_VALUE_T;

BEGIN

/*Insert the values through a FOR loop*/

 FOR I IN 1..100

 LOOP

 L_GET_ASCII(I) := ASCII(I);

 END LOOP;

/*Display the values randomly*/

 DBMS_OUTPUT.PUT_LINE(L_GET_ASCII(5));

 DBMS_OUTPUT.PUT_LINE(L_GET_ASCII(15));

 DBMS_OUTPUT.PUT_LINE(L_GET_ASCII(75));

END;

/

53

49

55

PL/SQL procedure successfully completed.

The salient features of associative arrays are as follows:

•	 An associative array can exist as a sparse or empty collection

•	 Being a non-persistent collection, it cannot participate in DML transactions

•	 It can be passed as arguments to other local subprograms within the
same block

•	 Sorting of an associative array depends on the NLS_SORT parameter

•	 An associative array declared in package speciication behaves as a
session-persistent array

Using Collections

[88]

Nested tables
Nested tables are a persistent form of collections which can be created in the
database as well as PL/SQL. It is an unbounded collection where the index or
subscript is implicitly maintained by the Oracle server during data retrieval. Oracle
automatically marks the minimum subscript as 1 and relatively handles others. As
there is no upper limit deined for a nested table, its size can grow dynamically.
Though not an index-value pair structure, a nested table can be accessed like an
array in a PL/SQL block.

A nested table is initially a dense collection but it might become sparse due to delete
operations on the collection cells.

Dense collection is the one which is tightly populated. That
means, there exists no empty cells between the lower and upper
indexes of the collection. Sparse collections can have empty
cells between the irst and the last cell of the collection. A dense
collection may get sparse by performing the "delete" operations.

When a nested table is declared in a PL/SQL program, they behave as a
one-dimensional array without any index type or upper limit speciication.

A nested table deined in a database exists as a valid schema object type. It can be
either used in a PL/SQL block to declare a PL/SQL variable for temporarily holding
program data or a database column of particular nested table type can be included
in a table, which can persistently store the data in the database. A nested table
type column in a table resembles a table within a table, but Oracle draws an out-
of-line storage table to hold the nested table data. This scenario is illustrated in the
following diagram:

Nested table

(Out of line storage)

Chapter 3

[89]

Whenever a database column of nested table type is created in a table (referred to
as parent table), Oracle creates a storage table with the same storage options as that
of the parent table. The storage table created by Oracle in the same segment carries
the name as speciied in the NESTED TABLE STORE AS clause during creation of the
parent table. Whenever a row is created in the parent table, the following actions are
performed by the Oracle server:

•	 A unique identiier is generated to distinguish the nested table instances of
different parent rows, for the parent row

•	 The instance of the nested table is created in the storage table alongside the
unique identiier of the parent row

The Oracle server takes care of these nested table operations. For the programmer or
user, the whole process is hidden and appears as a normal "insert" operation.

A nested table deinition in PL/SQL follows the following syntax:

DECLARE

TYPE type_name IS TABLE OF element_type [NOT NULL];

In the preceding syntax, element_type is a primitive data type or a user-deined
type, but not as a REF CURSOR type.

In a database, a nested table can be deined using the following syntax:

CREATE [OR REPLACE] TYPE type_name IS TABLE OF [element_type] [NOT
NULL];

/

In the preceding syntax, [element_type] can be a SQL supported scalar data type, a
database object type, or a REF object type. Unsupported element types are BOOLEAN,
LONG, LONG-RAW, NATURAL, NATURALN, POSITIVE, POSITIVEN, REF CURSOR, SIGNTYPE,
STRING, PLS_INTEGER, SIMPLE_INTEGER, BINARY_INTEGER and all other non-SQL
supported data types.

If the size of the element type of a database collection type has to be increased, follow
this syntax:

ALTER TYPE [type name] MODIFY ELEMENT TYPE [modified element type]

[CASCADE | INVALIDATE];

The keywords, CASCADE or INVALIDATE, decide whether the collection modiication
has to invalidate the dependents or the changes that have to be cascaded across
the dependents.

Using Collections

[90]

The nested table from the database can be dropped using the DROP command,
as shown in the following syntax (note that the FORCE keyword drops the type
irrespective of its dependents):

DROP TYPE [collection name] [FORCE]

Nested table collection type as the

database object
We will go through the following illustration to understand the behavior of a nested
table, when created as a database collection type:

/*Create the nested table in the database*/

SQL> CREATE TYPE NUM_NEST_T AS TABLE OF NUMBER;

/

Type created.

The nested table type, NUM_NEST_T, is now created in the database. Its metadata
information can be queried from the USER_TYPES and USER_COLL_TYPES
dictionary views:

SELECT type_name, typecode, type_oid

FROM USER_TYPES

WHERE type_name = 'NUM_NEST_T';

TYPE_NAME TYPECODE TYPE_OID

--------------- --------------- --------------------------------

NUM_NEST_T COLLECTION 96DE421E47114638A9F5617CE735731A

Note that the TYPECODE value shows the type of the object in the database and
differentiates collection types from user-deined object types:

SELECT type_name, coll_type, elem_type_name

FROM user_coll_types

WHERE type_name = 'NUM_NEST_T';

TYPE_NAME COLL_TYPE ELEM_TYPE_NAME

--------------- ---------- --------------------

NUM_NEST_T TABLE NUMBER

Chapter 3

[91]

Once the collection type has been successfully created in the database, it can be used
to specify the type for a database column in a table. The CREATE TABLE statement
in the following code snippet declares a column of the NUM_NEST_T nested table
type in the parent table, TAB_USE_NT_COL. The NESTED TABLE [Column] STORE AS
[Storage table] clause speciies the storage table for the nested table type column.
A separate table for the nested table column, NUM, ensures its out-of-line storage.

SQL> CREATE TABLE TAB_USE_NT_COL

 (ID NUMBER,

 NUM NUM_NEST_T)

 NESTED TABLE NUM STORE AS NESTED_NUM_ID;

Table created.

DML operations on nested table columns
Let us check out the way we perform DML operations on nested table type columns.

Inserting a nested table instance
The nested table data will be inserted using a collection type constructor. A collection
type constructor is a default constructor from Oracle which can be used to provide
value of each of its attributes.

INSERT INTO TAB_USE_NT_COL (ID, NUM)

VALUES

(1, NUM_NEST_T(10,12,3));

/

1 row created.

INSERT INTO TAB_USE_NT_COL (ID, NUM)

VALUES

(2, NUM_NEST_T(23,43));

/

1 row created.

Using Collections

[92]

Selecting a nested table column
When a table having a nested table column is queried, the nested table column
appears as an instance of the nested table object type:

SQL> SELECT *

 FROM tab_use_nt_col;

 ID NUM

---------- ------------------------------

 1 NUM_NEST_T(10, 12, 3)

 2 NUM_NEST_T(23, 43)

The TABLE expression can be used to open the instance and display the data in
relational format. The TABLE expression is used to access the attributes of the nested
table type. Oracle implicitly joins the parent row with the nested table row in the
query output.

SQL> SELECT T.id, T1.column_value

 FROM tab_use_nt_col T, TABLE (T.num) T1;

 ID COLUMN_VALUE

---------- ------------

 1 10

 1 12

 1 3

 2 23

 2 43

In the preceding SELECT query, COLUMN_VALUE is an Oracle pseudo column which is
used in the SELECT queries to signify the nested table column with no attribute name.

Updating the nested table instance
Nested table data can be updated either as a "cut and replace" option or through
the TABLE expression. Using the UPDATE statement, an instance can be replaced
with the new one.

Let us update the collection instance for ID 2 in the TAB_USE_NT_COL table:

UPDATE tab_use_nt_col

SET num = num_nest_t(10,12,13)

WHERE id=2

/

1 row updated.

Chapter 3

[93]

Now, query the table data to verify the nested table update:

SQL> SELECT * FROM tab_use_nt_col;

 ID NUM

---------- ------------------------------

 1 NUM_NEST_T(10, 12, 3)

 2 NUM_NEST_T(10, 12, 13)

The TABLE expression can be used to update a single element in the collection. For
example, in the table data shown above, if the collection instance has to be NUM_
NEST_T(10, 100, 3) for ID 1 instead of NUM_NEST_T(10, 12, 3), the TABLE
expression can be used to update the single element. Let us check out how to do it:

UPDATE TABLE (SELECT num FROM tab_use_nt_col WHERE id = 1) P

SET P.COLUMN_VALUE = 100

WHERE P.COLUMN_VALUE = 12;

1 row updated.

In the preceding UPDATE statement, the TABLE expression reads the collection type
instance returned by the subquery. It opens up the instance in relational format and
the instance values can be accessed and, hence, manipulated. It is to be noted that the
subquery must return a single instance only. It implies that the subquery must return
a single collection row.

Now query the table to verify the preceding modiication:

SQL> SELECT * FROM TAB_USE_NT_COL;

 ID NUM

---------- ----------------------------

 1 NUM_NEST_T(10, 100, 3)

 2 NUM_NEST_T(10, 12, 13)

A nested table collection type in PL/SQL
In PL/SQL, a nested table can be declared and deined in the declaration section
of the block as a local collection type. As a nested table follows object orientation,
the PL/SQL variable of the nested table type has to be necessarily initialized. The
Oracle server raises the exception ORA-06531: Reference to uninitialized
collection if an uninitialized nested table type variable is encountered during
block execution.

As the nested table collection type has been declared within the PL/SQL block, its
scope, visibility, and life is the execution of the PL/SQL block only.

Using Collections

[94]

The following PL/SQL block declares a nested table. Observe the scope and visibility
of the collection variable. Note that the COUNT method has been used to display the
array elements. It is covered later in this chapter in the Collections—a comparative
study section:

/*Enable the SERVEROUTPUT to display the results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a local nested table collection type*/

 TYPE LOC_NUM_NEST_T IS TABLE OF NUMBER;

 L_LOCAL_NT LOC_NUM_NEST_T := LOC_NUM_NEST_T (10,20,30);

BEGIN

/*Use FOR loop to parse the array and print the elements*/

 FOR I IN 1..L_LOCAL_NT.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE('Printing '||i||' element: '||L_LOCAL_
NT(I));

 END LOOP;

END;

/

Printing 1 element: 10

Printing 2 element: 20

Printing 3 element: 30

PL/SQL procedure successfully completed.

Additional features of a nested table
In the earlier sections, we saw the operational methodology of a nested table. We
will now focus on the nested table's metadata. Furthermore, we will demonstrate
a peculiar behavior of the nested table for the "delete" operations.

Oracle's USER_NESTED_TABLES and USER_NESTED_TABLE_COLS data dictionary views
maintain the relationship information of the parent and the nested tables. These
dictionary views are populated only when a database of a nested table collection
type is included in a table.

The USER_NESTED_TABLES static view maintains the information about the mapping
of a nested table collection type with its parent table.

Chapter 3

[95]

The structure of the dictionary view is as follows:

SQL> desc USER_NESTED_TABLES

 Name Null? Type

 ----------------------- -------- ---------------

 TABLE_NAME VARCHAR2(30)

 TABLE_TYPE_OWNER VARCHAR2(30)

 TABLE_TYPE_NAME VARCHAR2(30)

 PARENT_TABLE_NAME VARCHAR2(30)

 PARENT_TABLE_COLUMN VARCHAR2(4000)

 STORAGE_SPEC VARCHAR2(30)

 RETURN_TYPE VARCHAR2(20)

 ELEMENT_SUBSTITUTABLE VARCHAR2(25)

Let us query the nested table relationship properties for the TAB_USE_NT_COL table
from the preceding view:

SELECT parent_table_column, table_name, return_type, storage_spec

FROM user_nested_tables

WHERE parent_table_name='TAB_USE_NT_COL'

/

PARENT_TAB TABLE_NAME RETURN_TYPE STORAGE_SPEC

--

NUM NESTED_NUM_ID VALUE DEFAULT

In the preceding view query, RETURN_TYPE speciies the return type of the collection.
It can be VALUE (in this case) or LOCATOR. Another column, STORAGE_SPEC, signiies
the storage scheme used for the storage of a nested table which can be either
USER_SPECIFIED or DEFAULT (in this case).

The USER_NESTED_TABLE_COLS view maintains the information about the collection
attributes contained in the nested tables:

SQL> desc USER_NESTED_TABLE_COLS

 Name Null? Type

 ----------------------- -------- ---------------

 TABLE_NAME NOT NULL VARCHAR2(30)

 COLUMN_NAME NOT NULL VARCHAR2(30)

 DATA_TYPE VARCHAR2(106)

 DATA_TYPE_MOD VARCHAR2(3)

 DATA_TYPE_OWNER VARCHAR2(30)

 DATA_LENGTH NOT NULL NUMBER

 DATA_PRECISION NUMBER

 DATA_SCALE NUMBER

 NULLABLE VARCHAR2(1)

Using Collections

[96]

 COLUMN_ID NUMBER

 DEFAULT_LENGTH NUMBER

 DATA_DEFAULT LONG

 NUM_DISTINCT NUMBER

 LOW_VALUE RAW(32)

 HIGH_VALUE RAW(32)

 DENSITY NUMBER

 NUM_NULLS NUMBER

 NUM_BUCKETS NUMBER

 LAST_ANALYZED DATE

 SAMPLE_SIZE NUMBER

 CHARACTER_SET_NAME VARCHAR2(44)

 CHAR_COL_DECL_LENGTH NUMBER

 GLOBAL_STATS VARCHAR2(3)

 USER_STATS VARCHAR2(3)

 AVG_COL_LEN NUMBER

 CHAR_LENGTH NUMBER

 CHAR_USED VARCHAR2(1)

 V80_FMT_IMAGE VARCHAR2(3)

 DATA_UPGRADED VARCHAR2(3)

 HIDDEN_COLUMN VARCHAR2(3)

 VIRTUAL_COLUMN VARCHAR2(3)

 SEGMENT_COLUMN_ID NUMBER

 INTERNAL_COLUMN_ID NOT NULL NUMBER

 HISTOGRAM VARCHAR2(15)

 QUALIFIED_COL_NAME VARCHAR2(4000)

We will now query the nested storage table in the preceding dictionary view to list
all its attributes:

SELECT COLUMN_NAME, DATA_TYPE, DATA_LENGTH, HIDDEN_COLUMN

FROM user_nested_table_cols

where table_name='NESTED_NUM_ID'

/

COLUMN_NAME DATA_TYP DATA_LENGTH HID

------------------------------ ---------- ----------- ---------

NESTED_TABLE_ID RAW 16 YES

COLUMN_VALUE NUMBER 22 NO

We observe that though the nested table had only number elements, there is two-
columned information in the view. The COLUMN_VALUE attribute is the default
pseudo column of the nested table as there are no "named" attributes in the collection
structure. The other attribute, NESTED_TABLE_ID, is a hidden unique 16-byte system
generated raw hash code which latently stores the parent row identiier alongside
the nested table instance to distinguish the parent row association.

Chapter 3

[97]

If an element is deleted from the nested table, it is rendered as parse. This implies
that once an index is deleted from the collection structure, the collection doesn't
restructure itself by shifting the cells in a forward direction. Let us check out the
sparse behavior in the following example.

The following PL/SQL block declares a local nested table and initializes it with
a constructor. We will delete the irst element and print it again. The system
raises the NO_DATA_FOUND exception when we query the element at the index 1
in the collection:

/*Enable the SERVEROUTPUT to display the block messages*/

SQL> SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

SQL> DECLARE

 /*Declare the local nested table collection*/

 TYPE coll_method_demo_t IS TABLE OF NUMBER;

 /*Declare a collection variable and initialize it*/

 L_ARRAY coll_method_demo_t := coll_method_demo_t
(10,20,30,40,50);

 BEGIN

 /*Display element at index 1*/

 DBMS_OUTPUT.PUT_LINE('Element at index 1 before deletion:'||l_
array(1));

 /*Delete the 1st element from the collection*/

 L_ARRAY.DELETE(1);

 /*Display element at index 1*/

 DBMS_OUTPUT.PUT_LINE('Element at index 1 after deletion:'||l_
array(1));

 END;

 /

Element at index 1 before deletion:10

DECLARE

*

ERROR at line 1:

ORA-01403: no data found

ORA-06512: at line 15

Using Collections

[98]

Varray
Varrays were introduced in Oracle8i as a modiied format of a nested table. The
varray or variable size arrays are bounded and the persistent form of collection
whose major operational features resemble nested tables. The varray declaration
deines the limit of elements a varray can accommodate. The minimum bound of
the index is 1, current bound is the total number of resident elements and maximum
bound is the varray size. At any moment, the current bound cannot exceed the
maximum bound.

Like nested tables, varrays can be created as database objects and can also be used in
PL/SQL. Though the implementation is the same as a nested table, varray follow a
different storage orientation than the nested tables. They are stored in line with their
parent record as a raw value in the parent table. The inline storage mechanism no
more needs a storage clause speciication, unique identiier or separate storage table.
For some exceptional situations when the varray exceeds 4 K data, Oracle follows the
out-of-line storage mechanism and stores varray as an LOB.

The inline storage mechanism of varrays helps Oracle to reduce
the number of IOs on the disk. This makes varrays superior and
more performance eficient than nested tables.

As a database collection type, varrays can be a valid type for a table column or
object type attribute. If declared in a PL/SQL block, varrays are visible only
within the block.

The syntax for varrays, when deined as a database collection type, is as follows:

CREATE [OR REPLACE] TYPE type_name IS {VARRAY | VARYING ARRAY} (size_
limit) OF element_type

In PL/SQL, varrays can be declared as follows:

DECLARE

TYPE type_name IS {VARRAY | VARYING ARRAY} (size_limit) OF
element_type [NOT NULL];

In the preceding syntax, size_limit represents the maximum count of elements
in the array.

If the varray size has to be modiied after its creation in the database, follow this
ALTER TYPE syntax:

ALTER TYPE [varray name] MODIFY LIMIT [new size_limit]

[INVALIDATE | CASCADE];

Chapter 3

[99]

The varray size can only be increased by using the ALTER TYPE...
MODIFY statement. Even if the current maximum size has not been
utilized, Oracle doesn't allow the ripping off a varray size. If a user
attempts to reduce the varray size, Oracle raises the PLS-00728:
the limit of a VARRAY can only be increased and
to a maximum 2147483647 exception and invalidates the
varray collection type.

The INVALIDATE and CASCADE options signify the invalidation or propagation effect
on the dependent objects as a result of the type alteration.

Use the DROP command to drop a varray type from the database:

DROP TYPE [varray type name] [FORCE]

Varray in PL/SQL
Similar to the handling of a nested table as PL/SQL construct, varrays also can be
declared local to a PL/SQL block. In the following illustrations, observe the scope
and visibility of the varray variables.

Similar to nested tables, varrays too follow object orientation. For this reason, varrays
require initialization mandatorily before accessing them in the executable section of
the PL/SQL block.

/*Enable the SERVEROUTPUT to display the results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a local varray type, define collection variable and
initialize it*/

 TYPE V_COLL_DEMO IS VARRAY(4) OF VARCHAR2(100);

 L_LOCAL_COLL V_COLL_DEMO := V_COLL_DEMO('Oracle 9i',

 'Oracle 10g',

 'Oracle 11g');

BEGIN

/*Use FOR loop to parse the array variable and print the elements*/

 FOR I IN 1..L_LOCAL_COLL.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE('Printing Oracle version:' ||L_LOCAL_
COLL(I));

 END LOOP;

END;

/

Using Collections

[100]

Printing Oracle version:Oracle 9i

Printing Oracle version:Oracle 10g

Printing Oracle version:Oracle 11g

PL/SQL procedure successfully completed.

Varray as a database collection type
Let us illustrate the creation of a varray as a database collection type. We will see the
SELECT and DML operations on varrays:

/*Create the nested table in the database*/

SQL> CREATE OR REPLACE TYPE num_varray_t AS VARRAY (5) OF NUMBER;

/

Type created.

Oracle maintains the complete information about the newly created varray types in
the dictionary views USER_VARRAYS, USER_COLL_TYPES, and USER_TYPES.

Now, we will create a table which has a column of the varray type. Note that it has
no NESTED TABLE STORE AS clause as it used in the case of nested tables to specify the
name of the storage table.

CREATE TABLE tab_use_va_col

 (ID NUMBER,

 NUM num_varray_t);

Table created.

/*Query the USER_VARRAYS to list varray information*/

SELECT parent_table_column, type_name, return_type, storage_spec

FROM user_varrays

WHERE parent_table_name='TAB_USE_VA_COL'

/

PARENT_TAB TYPE_NAME RETURN_TYPE STORAGE_SPEC

---------- --------------- -------------------- -----------------

NUM NUM_VARRAY_T VALUE DEFAULT

DML operations on varray type columns
Being the common behavior of the homogeneous collections, varrays respond
afirmatively to the DML operations upon them. Similar to the nested tables, let us
demonstrate the DML actions on varray type columns.

Chapter 3

[101]

Inserting a varray collection type instance
The following code inserts the test data into the table created in the Varray as
a database collection type section. The INSERT statement uses a collection type
constructor and looks similar to that of the nested table:

/*Insert the sample data in the varray collection*/

INSERT INTO tab_use_va_col

VALUES

(1, num_varray_t (10,12,13))

/

1 row created.

INSERT INTO tab_use_va_col

VALUES

(2, num_varray_t (32, 23, 76, 27))

/

1 row created.

Note that the DML statements on varrays raise exception if elements supplied exceed
the deined limit. The following INSERT statement attempts to include six elements
in the collection type instance. Note that the maximum limit of a varray collection is
ive. Exception roars!!

INSERT INTO tab_use_va_col

VALUES

(3, num_varray_t (32, 23, 76, 27, 38, 3));

(3, num_varray_t (32, 23, 76, 27, 38, 3))

 *

ERROR at line 3:

ORA-22909: exceeded maximum VARRAY limit

Selecting a varray column
The following SELECT query selects the varray in an instance format:

SQL> SELECT * FROM tab_use_va_col;

 ID NUM

---------- ------------------------------

 1 NUM_VARRAY_T(10, 12, 13)

 2 NUM_VARRAY_T(32, 23, 76, 27)

Using Collections

[102]

Like we saw in nested tables, the TABLE expression can open the collection instance
and represent the object rows in relational format:

SQL> SELECT T.id, T1.column_value

FROM tab_use_va_col T, TABLE(T.num) T1;

 ID COLUMN_VALUE

---------- ------------

 1 10

 1 12

 1 13

 2 32

 2 23

 2 76

 2 27

7 rows selected.

Updating the varray instance
Similar to the demonstration shown in the nested tables, varrays can be updated
using the instance replacement option. The following UPDATE statement modiies the
varray instance for ID 1:

UPDATE TAB_USE_VA_COL

SET NUM = NUM_VARRAY_T(10, 12, 25)

WHERE ID = 1;

1 row updated.

Now, the table can be queried to verify the update:

SQL> select * from tab_use_va_col;

 ID NUM

---------- -----------------------------

 1 NUM_VARRAY_T(10, 12, 25)

 2 NUM_VARRAY_T(32, 23, 76, 27)

In case of varrays, a single element cannot be updated using the TABLE expression.
The reason is the different storage philosophy of varrays. A varray is stored in line
with the parent row and not as separate storage tables, as in the case of nested tables.
Therefore, a single element of a varray can be updated only through a PL/SQL block.

Chapter 3

[103]

Collections—a comparative study
In this section, we will compare the available collection types and also throw light on
the considerable points to select the appropriate collection type in the database.

Common characteristics of collection types
All three forms of collection types oblige to certain characteristics under all
situations. Let us check out some of the common properties of collection types:

•	 Persistent collection types can be passed as a formal argument to database
stored subprograms. Local collection types and non-persistent collection
types can be used for local subprograms only.

•	 Collection types can be used as a RETURN type of a function.

•	 Due to the object-oriented behavior of persistent collection types—nested
tables and varrays—the PL/SQL variables must be initialized by either of the
following ways:

	° Use the default collection constructor during declaration or in the
executable section

	° Assign a NOT NULL collection to the uninitialized collection variable

	° Fetch data from the database to assign to the uninitialized
collection variable

•	 A collection element can always be referenced as [Collection]
[index].[Attribute].

•	 Common collection related exceptions are as follows:

	° COLLECTION_IS_NULL: This exception is raised when the collection
is NULL

	° NO_DATA_FOUND: This exception is raised when the element
corresponding to a subscript does not exist

	° SUBSCRIPT_BEYOND_COUNT: This exception is raised when the index
exceeds the number of elements in the collection.

	° SUBSCRIPT_OUTSIDE_LIMIT: This exception is raised when the index
is not a legal value

	° VALUE_ERROR: This exception is raised when an element is attempted
for access without index

Using Collections

[104]

The following diagram branches the different places where collections can mark
their presence:

Collections

PL/SQL

variable

type

Object

type

attributesDatabase

column

types

Function's

Return

type

Subprogram

parameters

Nested table versus associative arrays
The following table compares the nested table and associative arrays in terms of size,
sparse, ordering, and storage:

Factor Nested table Associative array

Maximum size Dynamic Dynamic

Sparsity May exist Exists

Storage Out-of-line storage Non-persistent temporary
memory storage

Ordering No retention of index ordering Retains index order

Nested tables are preferred over associative arrays when the data has to be
physically stored in the database. Also, array operations are much more
convenient and smoother in nested tables as compared to associative arrays.

Associative arrays are used to temporarily hold the data for lookup or
caching purposes.

Chapter 3

[105]

Nested table versus varrays
Nested tables and varrays resemble each other up to a greater extent. Both store their
structures and data persistently in the database as collection types. The upper limit
is notably a difference which makes varrays more disciplined and tidy. Varrays are
always dense and maintain their subscript order:

Factor Nested table Varray

Maximum size Dynamic Fixed

Sparsity May exist Dense

Storage Out-of-line storage In Line storage (up to 4K)

Ordering No retention of index ordering Retains index order

Varrays are used in scenarios when the element count is ixed and sequential
access of elements is expected. For example, Address of employees is ixed to
three lines and must be accessed sequentially to maintain its credibility. Nested
tables provide untidy access to all elements where a user can delete or insert
elements simultaneously.

PL/SQL collection methods
Oracle provides a set of methods which can be used in conjunction with collections
in PL/SQL blocks. These methods access a collection type variable and perform
relevant activities such as extension, trimming, and deleting collection elements.
Besides these activities, few methods also provide information about the collection
such as COUNT and EXISTS. These utilities are known as collection methods and they
are not a built-in subprogram, because they can be used exclusively in conjunction
with collections.

The common syntax for all the collection methods is as follows:

[COLLECTION].METHOD (PARAMETERS)

EXISTS
The EXISTS function checks the existence of an element in a collection. The general
syntax of this function is EXISTS(<index>). It takes the subscript as an input
argument and searches it in the collection. If the element corresponding to the index
is found, it returns TRUE or else, returns FALSE. It is the only method which doesn't
raise any exception during its application with an uninitialized collection.

Using Collections

[106]

The following PL/SQL block declares a local nested table collection and its two
variables. While one array is uninitialized, the other one is initialized with sample
data. We will check the existence of the irst element in both arrays:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a local nested table collection*/

 TYPE coll_method_demo_t IS TABLE OF NUMBER;

/*Declare collection type variables*/

 L_ARRAY1 coll_method_demo_t;

 L_ARRAY2 coll_method_demo_t := coll_method_demo_t (45,87,57);

BEGIN

/*Check if first cell exists in the array 1*/

 IF L_ARRAY1.EXISTS(1) THEN

 DBMS_OUTPUT.PUT_LINE('Element 1 found in Array 1');

 ELSE

 DBMS_OUTPUT.PUT_LINE('Element 1 NOT found in Array 1');

 END IF;

/*Check if first cell exists in the array 2*/

 IF L_ARRAY2.EXISTS(1) THEN

 DBMS_OUTPUT.PUT_LINE('Element 1 found in Array 2');

 ELSE

 DBMS_OUTPUT.PUT_LINE('Element 1 NOT found in Array 2');

 END IF;

END;

/

Element 1 NOT found in Array 1

Element 1 found in Array 2

PL/SQL procedure successfully completed.

COUNT
As the name suggests, the COUNT function counts the number of elements in an
initialized collection. The COUNT method raises the COLLECTION_IS_NULL exception
for uninitialized collections.

The COUNT function returns zero when:

A nested table or varray collection is initialized with an
empty collection

An associative array doesn't have any elements

Chapter 3

[107]

It can be operated upon all three types of collections.

The following PL/SQL block declares a local nested table collection and its two
variables. We will check the element count in both the collection variables:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare the local collection type*/

 TYPE coll_method_demo_t IS TABLE OF NUMBER;

/*Declare the collection variables and initialize them with test
data*/

 l_loc_var coll_method_demo_t := coll_method_demo_t (10,20,30);

BEGIN

 DBMS_OUTPUT.PUT_LINE('The array size is '||l_loc_var.count);

END;

/

The array size is 3

PL/SQL procedure successfully completed.

LIMIT
The LIMIT function returns the maximum number of elements that can be
accommodated by a VARRAY collection type variable. This method can be used with
VARRAY collection types only. The LIMIT method raises the COLLECTION_IS_NULL
exception for uninitialized collections.

For associative arrays and nested tables, the LIMIT
method returns NULL.

The following PL/SQL block declares a local varray type and a variable of its type.
The varray type variable has been initialized with test data. Observe the difference
between the COUNT and LIMIT methods:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare local varray and its variable*/

 TYPE coll_method_demo_v IS VARRAY(10) OF NUMBER;

 L_ARRAY1 coll_method_demo_v := coll_method_demo_v (10,20,30);

Using Collections

[108]

BEGIN

/*Display the current count*/

 DBMS_OUTPUT.PUT_LINE('The varray has '||L_ARRAY1.COUNT||'
elements');

/*Display the maximum limit*/

 DBMS_OUTPUT.PUT_LINE('The varray can hold '||L_ARRAY1.LIMIT||'
elements');

END;

/

The varray has 3 elements

The varray can hold 10 elements

PL/SQL procedure successfully completed.

FIRST and LAST
The FIRST and LAST functions return the irst and last subscripts of a collection. For
an empty collection, these methods return NULL value. These methods can be used
with all three types of collections. The FIRST and LAST methods raise exception
COLLECTION_IS_NULL for uninitialized collections.

The following PL/SQL block demonstrates the use of the FIRST and LAST methods
with an initialized collection:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL bock*/

DECLARE

/*Display a local nested table collection*/

 TYPE coll_method_demo_t IS TABLE OF NUMBER;

 L_ARRAY coll_method_demo_t := coll_method_demo_t (10,20,30);

BEGIN

/*Display the first and last elements*/

 DBMS_OUTPUT.PUT_LINE('First element of the array: '|| L_ARRAY (L_
ARRAY.FIRST));

 DBMS_OUTPUT.PUT_LINE('Last element of the array: '|| L_ARRAY (L_
ARRAY.LAST));

END;

/

Starting Index of the array: 10

Last Index of the array: 30

PL/SQL procedure successfully completed.

Chapter 3

[109]

PRIOR and NEXT
The PRIOR and NEXT functions take an input index and return its previous and next
index from the given collection. If the PRIOR and NEXT functions are used with the
irst and last indexes respectively, the method returns NULL.

Both the methods can be used with all three types of collections. The PRIOR and
NEXT methods raise exception COLLECTION_IS_NULL for uninitialized collections.

The following PL/SQL shows the usage of the PRIOR and NEXT methods with a
PL/SQL type collection:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a local nested table collection*/

 TYPE coll_method_demo_t IS TABLE OF NUMBER;

 L_ARRAY coll_method_demo_t := coll_method_demo_t
(10,20,30,100,48,29,28);

BEGIN

/*Display the element which appears before 5th index*/

 DBMS_OUTPUT.PUT_LINE('Element before 5th element: '||L_ARRAY(L_
ARRAY.PRIOR(5)));

/*Display the element which appears after 6th index*/

 DBMS_OUTPUT.PUT_LINE('Element after 6th element: '||L_ARRAY(L_ARRAY.
NEXT(6)));

END;

/

Element before 5th element: 100

Element after 6th element: 28

PL/SQL procedure successfully completed.

EXTEND
The EXTEND function is used to append elements to a collection variable of nested
table or varray type. It cannot be used with associative arrays.

It is an overloaded function which can be used in three signatures as follows:

•	 EXTEND: It appends the collection with a NULL element

•	 EXTEND(x): It appends the collection with x number of NULL elements

Using Collections

[110]

•	 EXTEND(x,y): It appends the collection with x elements and with the value
as that of the y element. If the y element doesn't exist, the system raises a
SUBSCRIPT_BEYOND_COUNT exception.

The following PL/SQL block demonstrates the extension using all three signatures
of the EXTEND method. The irst extension appends the fourth NULL element to the
array. The second extension appends the ifth and sixth NULL elements to the array.
The third extension appends the seventh and eighth elements as 10 (value of the irst
element) to the array:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare local nested table collection type*/

TYPE coll_method_demo_t IS TABLE OF NUMBER;

/*Declare collection type variable and initialize it*/

L_ARRAY coll_method_demo_t := coll_method_demo_t (10,20,30);

BEGIN

/*Extend the collection. It adds a NULL element to the collection*/

 L_ARRAY.EXTEND;

 DBMS_OUTPUT.PUT_LINE(L_ARRAY.LAST||' element of the array is =
'||L_ARRAY(L_ARRAY.LAST));

/*Extend the collection. It adds two NULL elements at the end of the
collection*/

 L_ARRAY.EXTEND(2);

 DBMS_OUTPUT.PUT_LINE(L_ARRAY.LAST||' element of the array is =
'||L_ARRAY(L_ARRAY.LAST));

/*Extend the collection. It adds two NULL elements at the end of the
collection and populates with the 1st element*/

 L_ARRAY.EXTEND(2,1);

 DBMS_OUTPUT.PUT_LINE(L_ARRAY.LAST||' element of the array is =
'||L_ARRAY(L_ARRAY.LAST));

END;

/

L_ARRAY(4) element of the array is =

L_ARRAY(6) element of the array is =

L_ARRAY(8) element of the array is = 10

PL/SQL procedure successfully completed.

The EXTEND method raises the COLLECTION_IS_NULL exception for uninitialized
collections. If a varray is attempted for extension beyond its maximum allowed limit,
Oracle raises a SUBSCRIPT_BEYOND_LIMIT exception.

Chapter 3

[111]

TRIM
The TRIM function is used to cut the elements from the speciied collection, of the
nested table or varray type. It cannot be used with associative array type collections.
TRIM is an overloaded method, which can be used in the following two signatures:

•	 TRIM: It trims one element from the end of the collection

•	 TRIM(n): It trims n elements from the end of the collection. If n exceeds the
total count of elements in the collection, the system raises a SUBSCRIPT_
BEYOND_COUNT exception. No action has been deined for NULL value of n.

The following PL/SQL block shows the operation of the TRIM method on an
initialized PL/SQL table collection type:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a local nested table collection type*/

 TYPE coll_method_demo_t IS TABLE OF NUMBER;

/*Declare a collection variable and initialize it*/

 L_ARRAY coll_method_demo_t := coll_method_demo_t (10,20,30,40,50);

BEGIN

/*Trim the last element of the collection*/

 L_ARRAY.TRIM;

 DBMS_OUTPUT.PUT_LINE('L_ARRAY('||L_ARRAY.LAST||') element is =
'||L_ARRAY(L_ARRAY.LAST));

/*Trim the last 2 elements of the collection*/

 L_ARRAY.TRIM(2);

 DBMS_OUTPUT.PUT_LINE('L_ARRAY('||L_ARRAY.LAST||') element is =
'||L_ARRAY(L_ARRAY.LAST));

END;

/

L_ARRAY(4) element is = 40

L_ARRAY(2) element is = 20

PL/SQL procedure successfully completed.

Like other methods, the TRIM method raises a COLLECTION_IS_NULL exception for
uninitialized collections.

Using Collections

[112]

DELETE
The DELETE function is used to delete elements from a given collection. The
DELETE operation leaves the collection sparse. Any reference to the deleted
index would raise a NO_DATA_FOUND exception. The DELETE method raises a
COLLECTION_IS_NULL exception for uninitialized collections. It can be used
with all three types of collections.

The overloaded method can be used in the following signatures:

•	 DELETE: It lushes out all the elements of a collection
•	 DELETE(n): It deletes the nth index from the collection

•	 DELETE(n,m): It performs range deletion, where all the elements within the
range of the subscripts n and m are deleted.

The following PL/SQL block declares a coll_method_demo_t collection along with
its collection variable. This program displays the irst element of the collection before
and after the deletion of the irst subscript:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare the local nested table collection*/

TYPE coll_method_demo_t IS TABLE OF NUMBER;

/*Declare a collection variable and initialize it*/

L_ARRAY coll_method_demo_t := coll_method_demo_t (10,20,30,40,50);

BEGIN

 DBMS_OUTPUT.PUT_LINE('First element before deletion is :L_
ARRAY('||L_ARRAY.FIRST||') = '||L_ARRAY(L_ARRAY.FIRST));

/*Delete the 1st element from the collection*/

 L_ARRAY.DELETE(1);

 DBMS_OUTPUT.PUT_LINE('First element after deletion is : L_
ARRAY('||L_ARRAY.FIRST||') = '||L_ARRAY(L_ARRAY.FIRST));

END;

/

First element before deletion is : L_ARRAY(1) = 10

First element after deletion is : L_ARRAY(2) = 20

PL/SQL procedure successfully completed.

Chapter 3

[113]

Interestingly, Oracle doesn't allow the deletion of individual elements in a varray
collection. Either all the elements of the varray have to be removed using the
VARRAY.DELETE method or the elements can be trimmed from the end of the
varray collection. This scenario is illustrated in the following program:

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare the local varray collection*/

TYPE coll_method_demo_t IS VARRAY (10) OF NUMBER;

/*Declare a collection variable and initialize it*/

L_ARRAY coll_method_demo_t := coll_method_demo_t (10,20,30,40,50);

BEGIN

/*Delete the second element of varray*/

 L_ARRAY.DELETE(2);

END;

/

 L_ARRAY.DELETE(2);

 *

ERROR at line 8:

ORA-06550: line 8, column 3:

PLS-00306: wrong number or types of arguments in call to 'DELETE'

ORA-06550: line 8, column 3:

PL/SQL: Statement ignored

It is recommended that the TRIM and DELETE methods must not be
operated together or simultaneously on a collection. The DELETE
method retains a placeholder for the deleted element, while the
TRIM method destroys the element from the collection. Therefore,
the operation sequence "DELETE(last) followed by TRIM(1)"
would result in removal of a single element only.

Manipulating collection elements
A database column of collection type physically stores the data in the database.
As part of data operations, the collection type instance held by a column might get
updated. There are two approaches to manipulate the collection instance in the
database column:

•	 The complete instance can be replaced with a new one

•	 The target element can be solely modiied

Using Collections

[114]

The irst approach is feasible when the structure of the collection and the value
of other attributes of the instance are known. But it may not be the case every
time. However, it has been demonstrated in earlier sections. Therefore, Oracle
recommends manipulating the collection element through a PL/SQL program.

Let us demonstrate the collection element update with the following illustration.
Check out the latest data in the table TAB_USE_NT_COL:

SQL> SELECT * FROM TAB_USE_NT_COL;

 ID NUM

---------- --------------------------

 1 NUM_NEST_T(10, 12, 3)

 2 NUM_NEST_T(10, 12, 13)

Now, we will try to add an element (23) at the end of the collection instance for ID 2.

/*Enable the SERVEROUTPUT on to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a local variable of database collection type*/

 L_INS_NUM NUM_NEST_T;

BEGIN

/*Select the collection instance into the local variable for ID = 2*/

 SELECT num INTO L_INS_NUM

 FROM tab_use_nt_col WHERE id=2;

/*Extend the collection variable using EXTEND method. Include the new
element at the end of the collection*/

 L_INS_NUM.EXTEND;

 L_INS_NUM (L_INS_NUM.LAST) := 23;

/*Update the local collection instance in the table for ID = 2*/

 UPDATE tab_use_nt_col

 SET num = L_INS_NUM

 WHERE id=2;

END;

/

PL/SQL procedure successfully completed.

Chapter 3

[115]

Query the table to verify the manipulation in the collection:

SQL> SELECT * FROM TAB_USE_NT_COL;

 ID NUM

---------- ----------------------------

 1 NUM_NEST_T(10, 12, 3)

 2 NUM_NEST_T(10, 12, 13, 23)

Collection initialization
The persistent collection types—nested tables and varrays—follow features of object
orientation. By virtue of their behavior, PL/SQL variables of collection types must
be initialized. Initialization is a mandatory activity before the collection is accessed
in the PL/SQL program. An uninitialized exception generates the ORA-06531:
Reference to uninitialized collection exception.

Associative arrays are the local non-persistent arrays, so no initialization is required
for them.

We will discuss some of the ways to initialize a collection type variable in a
PL/SQL block:

•	 Using the default collection constructor during declaration or in the
executable section:

Oracle provides a default constructor (with the same name as the collection
type) with every type which can be used to provide attribute values. It can
be used to initialize the collection variable either as NULL or with the sample
default data:

/*Start the PL/SQL block*/

DECLARE

 TYPE coll_nt_t IS TABLE OF NUMBER;

/*A collection variable is initialized with sample data in default
constructor*/

 L_LOCAL_VAR1 coll_nt_t := coll_nt_t (10,20);

/*A collection variable is initialized with an empty collection*/

 L_LOCAL_VAR2 coll_nt_t := coll_nt_t();

BEGIN

 …

 …

END;

Using Collections

[116]

In the preceding PL/SQL block, the L_LOCAL_VAR1 collection variable is
initialized with a collection constructor having two rows. Note that this is
a default initialization, not the actual assignment. The actual assignment of
collection instances is done in the executable section only which overrides the
initialized instance. The L_LOCAL_VAR2 collection variable is initialized with
an empty collection.

However, the initialization can be made in an executable section also before
the collection variable is accessed for any operation:

/*Start the PL/SQL block*/

DECLARE

 TYPE coll_nt_t IS TABLE OF NUMBER;

/Uninitialized collection variables*/

 L_LOCAL_VAR1 coll_nt_t;

 L_LOCAL_VAR2 coll_nt_t;

BEGIN

/*Initialization in executable section*/

 L_LOCAL_VAR1:= coll_nt_t (10,20);

 L_LOCAL_VAR2:= coll_nt_t();

END;

•	 Selecting a collection instance into the local collection variable:

In the executable section, a SELECT statement can pull a collection instance
(of the same collection type) into the local collection variable. This method is
permissible only when the collection type exists as a database type and the
PL/SQL collection variable is of that particular collection type.

In our earlier illustrations, num_nest_t is a nested table in the database. We
will use the same type to declare a local collection variable:

/*Start the PL/SQL block*/

DECLARE

 l_loc_num num_nest_t;

BEGIN

/*Fetching collection instance from database to initialize a
collection variable*/

 SELECT num INTO l_loc_num

 FROM tab_use_nt_col

 WHERE id = 1;

END;

/

PL/SQL procedure successfully completed.

Chapter 3

[117]

Summary
This chapter covers one of the eficient features of PL/SQL programming—collections.
We discussed and learned the three types of collections in PL/SQL. With the help of
the illustrations, we understood their handling such as the selections and transactions
in the database as well as in PL/SQL. We learned about the various collection methods
and discovered the ways of collection initialization. The next chapter brings in a
unique feature and one of the strengths of PL/SQL language—external procedures.

Practice exercise
1. Which two statements are true about associative arrays?

a. Associative arrays can have negative subscripts.

b. Associative arrays are always dense collections.

c. Associative arrays don't need initialization in a PL/SQL block.

d. The upper limit of associative arrays can be dynamically modiied.

2. Which of the following statements is true about nested tables?

a. Nested tables are stored in a segment different from that of the
parent table.

b. Nested table columns can have string subscripts

c. Nested tables can grow dynamically up to any extent.

d. A database column of the nested table collection type can be separately
queried by its storage name.

3. Only varrays can have sequential numbers as subscripts.

a. True

b. False

Using Collections

[118]

4. Which of the following associative array declarations is/are correct?

DECLARE

TYPE T1 IS TABLE OF NUMBER INDEX BY BOOLEAN;

TYPE T2 IS TABLE OF VARCHAR2(10) INDEX BY NUMBER;

TYPE T3 IS TABLE OF DATE INDEX BY SIGNTYPE;

TYPE T4 IS TABLE OF EMPLOYEES%ROWTYPE INDEX BY POSITIVE;

BEGIN

…

…

END;

a. T1

b. T2

c. T3

d. T4

5. Which of the following statements is/are true about varrays?

a. The limit of varray elements can be modiied during runtime using the
ALTER TABLE statement.

b. A Varray element can be deleted using the DELETE method.

c. For an empty collection of a varray type, the value of LAST is equal to COUNT.

d. Varrays can exist as sparse collections.

6. What will be the output of the following PL/SQL block?

DECLARE

 TYPE T IS TABLE OF NUMBER;

 L_NUM T := T(1,2);

BEGIN

 DBMS_OUTPUT.PUT_LINE(L_NUM(1));

 L_NUM := T(10,20);

 DBMS_OUTPUT.PUT_LINE(L_NUM(1));

END;

a. 1 and 1.

b. 1 and 10.

c. Oracle raises a COLLECTION_IS_NULL exception at line 5.

d. 10 and 10.

Chapter 3

[119]

7. The EMPLOYEES table stores the details of 14 employees. Identify the solution
of the error in the following PL/SQL program:

DECLARE

 TYPE EMP_VARRAY_T IS VARRAY (10) OF EMPLOYEES%ROWTYPE;

 L_EMP EMP_VARRAY_T := EMP_VARRAY_T();

BEGIN

 DBMS_OUTPUT.PUT_LINE(L_EMP.COUNT);

 SELECT *

 BULK COLLECT INTO L_EMP

 FROM EMPLOYEES;

 DBMS_OUTPUT.PUT_LINE(L_EMP.COUNT);

END;

/

0

DECLARE

*

ERROR at line 1:

ORA-22165: given index [11] must be in the range of [1] to [10]

ORA-06512: at line 6

a. The varray size must be increased to 14 or a higher limit.

b. The varray variable must be initialized with a deine employee data.
c. Data for only 10 employees must be selected into a varray variable.

d. The varray deinition is wrong; a record type cannot be made as an
element type of a varray collection.

8. Which of the following statements are wrong about the collection methods?

a. EXISTS raises NO_DATA_FOUND exception if the element for the input sub-
script does not exist.

b. DELETE can be used with varrays.

c. LIMIT returns the current limit of the nested table collection.

d. TRIM removes an element of the collection from the end.

Using Advanced Interface

Methods
External routines enable the communication between the Oracle database and
the programs, which are written in non-database language such as C, C++, Java,
or COBOL. The fact is not new that Oracle has emerged as a compatible database
manager for application clients. But from the programming and development
perspective, every language has its own special features and utilities. Before
UTL_MAIL and UTL_SMTP came to the rescue, there was no option for sending an
e-mail in Oracle. In some situations, a special logic written on the client side is
required to be used on the server side too. The idea is to resolve the situations
where a non-PL/SQL program has to be invoked from PL/SQL. To confront such
situations, Oracle introduced external routines in its eighth release (Oracle 8) to
bridge the gap between the database and non-PL/SQL programs. This chapter
covers the external procedures and its implementation in the following topics:

•	 Understanding external routines

	° Architecture

	° Beneits
•	 Executing external C programs from PL/SQL

•	 Executing external Java programs from PL/SQL

Using Advanced Interface Methods

[122]

Understanding external routines
An external routine allows a program, which is written in a language other than
PL/SQL, to be used in PL/SQL. For instance, a program logic written in Java can be
invoked and used from PL/SQL. The program in non-PL/SQL language is referred
to as external programs. The favorable situations for the use of external routines may
arise in an application development environment which follows strict regimentation
of the client, API and database layers. On broader terms, an external program has
to be stored as a shared library on the server followed by its publishing through call
speciication. Once the external routine is published, it is ready to be used in PL/SQL.

Within the scope of this chapter, we will discuss the invocation of external programs
written in C and Java language from PL/SQL.

External

Programs

C language

Program

Java

language

program
Oracle

subprogram

PL/SQL

Program

Architecture of external routines
Before we get into the core methodology followed for external routines, we will
discuss some of the crucial components of Oracle architectural support to the
external routines. These components are

•	 The extproc process: The extproc process is the protagonist of the complete
architecture. It is a session speciic process which receives the request from
the Oracle Net listener and kicks off the external program execution. It loads
the DLL, takes care of the arguments, receives the required output from the
execution of an external program and sends it back through the listener. It is
an essential element of the architecture.

Chapter 4

[123]

•	 Shared library of external routine: An external program has to be executed
as a shared library to be accessed in Oracle PL/SQL. Microsoft operating
systems identify shared libraries in the form of .dll iles (Dynamic Linked
Library) while the shared iles of operating systems such as Unix, Linux, or
Solaris, have .so extension. The external program language must be the one
whose shared library can be invoked from C. It can be C, C++, FORTRAN,
COBOL, or Visual Basic. The shared libraries may include multiple programs
which can be invoked as external programs. Thus, loading a smaller number
of libraries can provide access to multiple external programs.

Dynamic linked shared libraries are easy to create and maintain than their statically
linked component. A shared library can be shared across the database sessions; thus
reducing memory consumption in multisession environments. Spawned by the
Oracle listener, the extproc process automatically loads the shared libraries. The
external program contained within the shared library is executed and the result is
returned back to the extproc process and lows down to the PL/SQL procedure call.

There are two relevant terms—callout and callback—associated with the external
routine handling.

A call is referred to as callout when the PL/SQL procedure invokes an external
procedure. On the other hand, if the external procedure invokes a statement, which
drives the database engine, the call is known as callback. The statement can be a SQL
or a PL/SQL construct, which hits the Oracle server to perform an operation.

The architecture of an external program processing depends a lot on the two
components mentioned earlier. Whenever the PL/SQL runtime engine receives
the request for the execution of an externally implemented procedure, it directs
the call to the TNS service ORACLR_CONNECTION_DATA. Note that the ORACLR_
CONNECTION_DATA is the default TNS service for external routine connections, which
is conigured by the Oracle Net Coniguration assistant during database software
installation to establish the interaction between the database server and external
routine connections. Oracle Common Language Runtime (ORACLR) is a host
which coordinates the external process to invoke a non-PL/SQL program in PL/
SQL. However, the default net conigurations can be modiied manually to ensure
enhanced security standards. From the TNS service address, it picks up the key
and veriies the network with the current running active listener. Now, using the
speciic connection details, it invokes the extproc process. As stated earlier, the
extproc process uses the speciied DLL path to load the shared library. In addition,
the process handles the input arguments (if any) and transfers the output from the
execution of the external program through the listener.

Using Advanced Interface Methods

[124]

The preceding description has been pictorially demonstrated in the
following lowchart:

The extproc

process

terminates with

an exception

PL/SQL runtime engine encounters

externally compiled code

Directs to TNS service

ORACLR_CONNECTION_DATA

Network verification with the current

active listener

Invokes the extproc process

Loads the DLL from the given path, sends

arguments, and receives output
Returns output in

the same order

Fails

Fails

Fails

Fails

Fails

The processing of the extproc process is carried out separately from
the other database process. Even if the extproc process crashes, it
does not produce any side effects on the kernel memory.

In the course of the steps shown in the preceding lowchart, failure of any of
them results in the termination of the extproc process. Some of the commonly
encountered exceptions during the cycle are as follows:

•	 ORA-28576: Lost RPC connection to external procedure agent: The
exception is raised when the Oracle listener is not able to establish the
connection with the extproc process.

•	 ORA-28595: Extproc agent: Invalid DLL path: The exception is raised when
the extproc process is not able to locate the compatible DLL in the speciied
location. The probable causes of the exception may be:

	° Wrong DLL path speciication: DLL has been generated at a different
OS location and manually moved to the target location. It is always
recommended to move the program ile at the target location and
natively generate the DLL at the particular location.

Chapter 4

[125]

	° The Oracle Net coniguration expects a dedicated listener for
the extproc process. If the mapping of the TNSNAMES.ora and
LISTENER.ora ile works perfectly, this step can be overruled.
However, it has been a recommended step to maintain concurrencies
among the listeners.

•	 ORA-06521: PL/SQL Error mapping function: The external program has
been wrongly mapped in the PL/SQL call speciication. The reason can be
parameter data type mismatch or an incorrect program name reference in the
call speciication.

Oracle Net Coniguration
As we discussed in the previous section, the extproc process acts as the
communication channel between PL/SQL and the external program. It is started
by the Oracle listener and interacts with the external program through the DLL and
transmits back the program output through the same passage.

The extproc process activation is governed by the Oracle Net services where the
TNSNAMES.ora and LISTENER.ora iles are conigured by default by the Oracle Net
Coniguration assistant during database software installation. However, the net
coniguration can be modiied to enforce and ensure high-level security. We will now
discuss the requirements of Oracle Net services coniguration and management. Both
the ORA iles can be found under $ORACLE_HOME\network\admin\ directory. One
must keep a hawk eye on the security scheme to modify the iles on the server as we
will be working with the ORA iles in this section.

TNSNAMES.ora
The TNSNAMES.ora ile provides the database connection aliases or service names
to connect to the appropriate listener and, hence, the target database. It takes the
requests from the client which is trying to establish the connection with the database.

The term TNS stands for Transparent Network Substrate.

Using Advanced Interface Methods

[126]

In the default TNSNAMES.ora ile, which is conigured during the database software
installation, a ORACLR_CONNECTION_DATA service is created to support external
services. This service is responsible for activating the extproc process. It veriies the
network connection using the ADDRESS parameter value, followed by a connection
establishment using the CONNECT_DATA parameter value. The service entry in the
TNSNAMES.ora ile looks as follows:

ORACLR_CONNECTION_DATA =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))

)

 (CONNECT_DATA =

 (SID = CLRExtProc)

 (PRESENTATION = RO)

)

)

In the preceding entry, the parameters KEY and SID have variable values while other
values are ixed. The values must be concurrent with those of the corresponding
listener entries.

The ADDRESS parameter value checks for the listeners which can receive IPC
(Internet Procedure Calls) requests through the KEY value EXTPROC1521. The
PROTOCOL parameter has a ixed value IPC to establish the interaction between
the server and the external service requests. Once the ADDRESS setup matches the
current active listener, it uses the CONNECT_DATA parameter value to shoot the
extproc process. The PRESENTATION parameter is a performance booster parameter
which directs the database server to concentrate and respond to the client through
a protocol—Remote-Ops (RO).

Note the CONNECT_DATA parameter value. It searches for the listener
with the same SID CLRExtProc. The CLRExtProc is a listener mode
which allows PL/SQL programs to access external programs.

LISTENER.ora
All the database connection requests pass through the listeners. A listener entry in
the ile contains the network coniguration parameters of the server.

A typical LISTENER.ora ile which is set up during the database installation contains
two entries namely LISTENER and SID_LIST_LISTENER.

Chapter 4

[127]

The LISTENER entry gives the protocol and key details. From the entry details,
we can notice that it can listen to an IPC request, as well as TCP requests:

LISTENER =

 (DESCRIPTION_LIST =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))

 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))

)

)

The SID_LIST_LISTENER contains the SID details of the external services which can
interact with the LISTENER listener. It contains the SID_NAME, ORACLE_HOME, and
PROGRAM parameters. The SID_NAME parameter must be in sync with the SID value
under the CONNECT_DATA parameter of the ORACLR_CONNECTION_DATA service in
TNSNAMES.ora. It identiies the extproc process. The PROGRAM parameter value is
used for the program identiication for extproc.

The SID_LIST_LISTENER entry in the LISTENER.ora is as follows:

SID_LIST_LISTENER =

 (SID_LIST =

 (SID_DESC =

 (SID_NAME = CLRExtProc)

 (ORACLE_HOME = <<Oracle Home>>)

 (PROGRAM = EXTPROC1521)

 (ENVS= "EXTPROC_DLLS=[ONLY | ANY | (DLL path)]")

)

)

The location of the shared library ile has to be registered in the preceding SID_
LIST_LISTENER entry. From Oracle 9.2 and higher, Oracle has imposed restriction
on the default location of shared libraries. By default, it can interpret the shared
libraries located in the $ORACLE_HOME\bin\ directory. If the shared library is
located at another location on the server, it has to be speciied in the EXTPROC_DLLS
environment parameter. The permissible value for the environment are ONLY, ANY, or
the actual DLL path.

•	 ONLY:[DLL:DLL...] gives the authority to specify multiple DLL iles in
varied locations. The DLL ile paths are separated by a colon. It offers
high-level security as it limits the libraries to be interpreted by extproc.

•	 [DLL : DLL ...]: One can specify only the DLL path without using the
ONLY parameter. In such case, all the DLLs under the $ORACLE_HOME\bin\
directory are accessible by the extproc process.

•	 ANY allows any DLL on the server to be loaded by the extproc process.

Using Advanced Interface Methods

[128]

Some of the sample ENVS parameter looks as follows:

•	 ENVS= "EXTPROC_DLLS=ANY" (allows any DLL on the server to be loaded by
the extproc process)

•	 ENVS= "EXTPROC_DLLS=ONLY:C:\MyDLL\Hello.dll"

•	 ENVS= "EXTPROC_DLLS=ONLY:C:\MyDLL\Hello.dll:C:\TestDLL\Math.

dll"

These speciications allow only the DLLs from the speciied locations to be loaded by
the extproc process.

In secured production environments, it is advisable to include a separate listener for
the extproc process to segregate the handling of the IPC and TCP requests through
the SID_LIST entries. In that case, follow the following steps:

1. Take the backup of the existing LISTENER.ora and TNSNAMES.ora iles.
2. Modify the existing LISTENER and SID_LIST_LISTENER entries for TCP

requests and SID_NAME, respectively.

3. Add the EXTPROC_LISTENER and SID_LIST_EXTPROC_LISTENER entries in
the LISTENER.ora ile. An example of externally registered LISTENER entries
is shown as follows:

LISTENER =

 (DESCRIPTION_LIST =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = <<host>>)(PORT = 1521))

)

)

SID_LIST_LISTENER =

 (SID_LIST =

 (SID_DESC =

 (SID_NAME = <<Database Name>>)

 (ORACLE_HOME = <<Oracle Home>>)

)

)

EXTPROC_LISTENER =

 (DESCRIPTION_LIST =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = IPC)(KEY = <<extproc key>>))

)

Chapter 4

[129]

)

SID_LIST_EXTPROC_LISTENER =

 (SID_LIST =

 (SID_DESC =

 (SID_NAME = CLRExtProc)

 (ORACLE_HOME = <<Oracle Home>>)

 (PROGRAM = EXTPROC1521)

 (ENVS= "EXTPROC_DLLS=[ONLY | ANY | (DLL path)]")

)

)

4. The original service has to be rebuilt to inherit the changes and a new service
has to be created for the new listener.

With the default settings, Oracle 11g coniguration has not been reported for issues in
the extproc process establishment, activation, or working.

Oracle Net Coniguration veriication
The Oracle Net Coniguration can be veriied by testing the ORACLR_CONNECTION_
DATA TNS service in the command-line window. The tnsping command veriies only
the existence of the service name. Neither does it verify the listener coniguration for
the external routines nor does it ensure the listener compatibility on the server. The
probable responses of the tnsping command are as follows:

•	 If the result of the tnsping command is OK, it means the coniguration has
been perfectly done

•	 If the result of the tnsping command is an exception TNS-03505: Failed
to resolve name, the service name doesn't exist in the TNSNAMES.ora ile

•	 If the result of the tnsping command is an exception TNS-12541: TNS:no
listener, the service is not currently available on the server

The demonstrations for these cases are as follows:

•	 Case 1: The service exists in the TNSNAMES.ora ile:
C:\>tnsping ORACLR_CONNECTION_DATA

TNS Ping Utility for 32-bit Windows: Version 11.2.0.1.0 -
Production on 05-JAN-2012 14:46:24

Copyright (c) 1997, 2010, Oracle. All rights reserved.

Used parameter files:

Using Advanced Interface Methods

[130]

C:\ORACLE\product\11.2.0\dbhome_1\network\admin\sqlnet.ora

Used TNSNAMES adapter to resolve the alias

Attempting to contact (DESCRIPTION = (ADDRESS_LIST = (ADDRESS
= (PROTOCOL = IPC)(KEY = EXTPROC1521))) (CONNECT_DATA = (SID =
CLRExtProc)

(PRESENTATION = RO))

OK (20 msec)

•	 Case 2: The service does not exist in the TNSNAMES.ora ile:
C:\>tnsping MYEXT_CONNECTION_DATA

TNS Ping Utility for 32-bit Windows: Version 11.2.0.1.0 -
Production on 05-JAN-2012 14:51:38

Copyright (c) 1997, 2010, Oracle. All rights reserved.

Used parameter files:

C:\app\INSAGUP\product\11.2.0\dbhome_1\network\admin\sqlnet.ora

TNS-03505: Failed to resolve name

Beneits of external procedures
The beneits of external procedures are:

•	 Integration of strengths: The realization of capabilities of a programming
language in another one demonstrates lexibility of one and adaptation of
the other. Also a program adding up to the features of another language
integrates strengths and capabilities of the programming.

•	 Reusability of client logic: As the server-side external program is
sharable among all the database users, the logic could be reused by
the connecting user.

•	 Logical extensibility: External routines maintain the margin to extend its
logic. From the application's perspective, external procedures also avoid
logical redundancy.

•	 Enhanced performance: Moving the execution of calculative programs and
methods from client to server side improve their execution by reducing the
network round trips.

Chapter 4

[131]

Executing external C programs from
PL/SQL
Oracle extends the architectural support to the external programs in C, C++, Java,
or the one whose library is interpretable by C. In the external procedure architecture,
we saw the processing steps of an external program. Now, we will list the
development steps to run a C program from PL/SQL:

1. Write a C program and compile it.

2. Copy the C program's code ile in the $ORACLE_HOME\bin\ directory.
Generate the DLL using a hardware supported native C compiler.

For demonstration purposes, we will use the MingW (Minimal GNU
for Windows) compiler to compile C program and generate the DLLs.

It can be downloaded from http://www.mingw.org/wiki/
Getting_Started.

3. Conigure the Oracle Net service.
4. Create a PL/SQL library object for the DLL.

5. Create a call speciication in PL/SQL to publish the external program.
Specify the external language used in the program (here, it is C), the PL/
SQL library name, the method in the external program and the parameters
mapped as per the mapping matrix between PL/SQL and external
programming language.

6. Execute the call speciication to observe the execution of the
external program.

We will illustrate these steps in detail in the case study mentioned in the
following section.

Executing C program through external
procedure—development steps
In a secure application environment, the client team has segregated the string utility
methods from the data layer to the client layer. We will take up a small program,
which converts the case of a string input to uppercase, as an example. Check it out!

Using Advanced Interface Methods

[132]

1. Creating and compiling the C program:

The following C program (CaseConvert.c) takes two numeric inputs
and returns their sum:

#include<stdio.h>

#include<conio.h>

char ChangeCase(char *caps)

{

 int index = 0;

 while (caps[ind])

 {

 caps[index] = toupper(caps[index]);

 index++;

 }

 return caps;

 getch();

}

The ile can be placed at any writable OS location on the server. In
production environments, the privilege scheme to create or save a
ile on the operation system is decisive over the security factor on
the server. For demonstration purposes, we will place the compiled
ile in the C:\Labs\C\ directory.

Note that compilation is necessary to check the validity of the program.

C:\Labs\C> gcc –c CaseConvert.c

As a result, the CaseConvert.o compiled module got generated at the
same location.

2. Generating the shared library for the C program:

The shared library (DLL) can be generated using the gcc command:

C:\Labs\C>gcc -shared CaseConvert.c -o CaseConvert.dll

Verify the generation of DLL at the same path. Moreover, the DLL path must be
included in the ENVS="EXTPROC_DLLS=" parameter in the LISTENER.ora ile.

3. Coniguring the Oracle Net service:
Recheck the Oracle Net services coniguration based on the
recommendations made in the last section. The coniguration
checklist is as follows:

	° The KEY value under the ADDRESS parameter of the
ORACLR_CONNECTION_DATA TNS service is same as the
KEY value under ADDRESS parameter of the active listener.
Make note of the case sensitiveness.

Chapter 4

[133]

	° The SID value under CONNECT_DATA parameter of TNS service
ORACLR_CONNECTION_DATA matches the SID_NAME of the
SID_LIST_LISTENER.

	° The DLL path has been mapped correctly for the ENVS parameter
in the listener ile.

	° The ORACLR_CONNECTION_DATA pings successfully.

4. Creating a PL/SQL library object for the DLL:

This is the irst programming step in the Oracle database. The PL/SQL library
object acts as a database alias for the shared library location to be accessed by
the PL/SQL subprograms. It is created either by a DBA or a user who enjoys
the CREATE LIBRARY or the CREATE ANY LIBRARY privilege. If a DBA creates
the library, he must grant the EXECUTE privilege on the library to the user.

A PL/SQL library can be created as per the following syntax:

CREATE [OR REPLACE] LIBRARY [Library name] [IS | AS]

[DLL path with the name in single quotes]

AGENT [Agent DB link, if any];

/

In the syntax, the DLL path is the OS location of the DLL on the server.
Note that the Oracle server never veriies the existence of the ile speciied
in the library syntax.

In our case, we will follow the irst method. The DBA or a user with DBA
privileges grants the CREATE LIBRARY privilege to the ORADEV user and the
ORADEV user creates the library

/*Connect as SYSDBA*/
CONN sys/system AS SYSDBA

Connected.

/*Grant the CREATE LIBRARY privilege*/
GRANT CREATE LIBRARY TO ORADEV;

Grant succeeded.

Now, the ORADEV user can create the library in its own schema as follows:
/*Connect as ORADEV*/
CONN ORADEV/ORADEV

Connected.

/*Connect the library specifying the complete DLL path*/

CREATE OR REPLACE LIBRARY EXTDLL

AS 'C:\Labs\C\CaseConvert.dll'

/

Library created.

Using Advanced Interface Methods

[134]

5. Publishing the external program through call speciication:
A PL/SQL wrapper method is created to invoke the external procedure
from the database. It uses the library object to refer to the DLL which
contains the C program as a linked module. It contains the external program
method name which must be exactly the same as the one used in the external
program. It maps the parameter based on inter compatibility between
PL/SQL and the external program's base language. For example, char will
be mapped as VARCHAR2, int will be mapped as NUMBER, and so on.

This PL/SQL wrapper method is known as call speciication and the process
is known as publishing the external program. The call speciication serves
the following objectives:

	° Intercommunicates between the database engine and the external
base language (C or Java)

	° Dispatches the C-language program

	° Parameter mode mappings and data type conversions

	° Memory management

	° Database purity state

The call speciication can be a standalone procedure, function, or a package,
too. It is the structure of the external C program which categorizes the call
speciication object type. The general structure of a call speciication of
function type looks as follows:

CREATE OR REPLACE FUNCTION [Name] [Parameters]

RETURN [data type]

[IS | AS]

[call specification]

END;

Similarly, call speciication when linked to a procedures looks as follows:
CREATE OR REPLACE PROCEDURE [Name] [Parameters]

 [IS | AS]

[Call specification]

END;

The call speciication unites the details of the database library, external
programming language, and the external program. It links the complete call
to a subprogram such as procedure, function, package, or object type body.

Chapter 4

[135]

The call speciication follows the following syntax:
AS LANGUAGE C

[LIBRARY (library name)]

[NAME (external program name)]

[WITH CONTEXT]

[AGENT IN (formal parameters)]

[PARAMETERS (parameter list)];

The components in the preceding syntax are listed as follows:

	° LANGUAGE C states the base language of the external program. In this
case, it is C.

	° LIBRARY is the database library object.

	° NAME is the external program name. Note that it is case sensitive; it
must be the same as speciied in the program code.

	° The [WITH CONTEXT] clause directs PL/SQL to pass the "context
pointer" to the external program being invoked. Such parameters are
of the OCIExtProcContext type.

	° [AGENT IN (formal parameters)] is a list of formal parameters to
the call speciication.

	° [PARAMETERS (parameter list)] represents the parameter
mapping between PL/SQL and C by position.

For our illustration, the call speciication can be coded as follows:
CREATE OR REPLACE FUNCTION F_CASE_CONVERT (P_STRING VARCHAR2)

/*Specify the RETURN type in compatibility with the external
program*/

RETURN VARCHAR2

/*Specify the external program's base language*/

AS LANGUAGE C

/*Specify the PL/SQL library object name*/

LIBRARY EXTDLL

/*Specify the external function name*/

NAME "ChangeCase"

/*Specify the parameters*/

PARAMETERS (P_STRING STRING);

Function created.

Using Advanced Interface Methods

[136]

Let us verify the working of the preceding call speciication with a PL/SQL
anonymous block, shown as follows:

SQL> DECLARE

 /*Declare a local parameter. Initialize with the test
data*/

 l_str VARCHAR2(1000) := 'oracle pl/sql developer';

 BEGIN

 /*Invoke the function and display he result*/

 l_str := F_CASE_CONVERT (l_str);

 DBMS_OUTPUT.PUT_LINE(l_str);

 END;

 /

ORACLE PL/SQL DEVELOPER

PL/SQL procedure successfully completed.

Executing Java programs from PL/SQL
Similar to C programs, Oracle can communicate with Java classes as external
procedures, too. Unlike C external programs, the Java classes and Java source iles
are stored as schema objects in the database. But the caveat here is that the Java
classes must be operational in the logical side and not on the user interface. It implies
that the Java programs which offer generic utility or data processing operations are
the best candidates to be loaded into Oracle.

Invoking Java code from PL/SQL not only reduces the network overhead from the
client but it also helps in the distribution of logic across the layers and reduces code
redundancy. Under this section, we will discuss how to load a Java class into the
database and access it through the call speciication.

Unlike C external procedures, calling Java program from PL/SQL is convenient.
There is no dependency on the shared library, too. But yes, there is something known
as Libunit which is like the Java shared library. Upon invocation of a Java external
procedure, these shared libraries are loaded automatically by the extproc process
and executed.

Java is natively a part of the Oracle database. It doesn't use the extproc agent
process for setting up the communication between Java and Oracle. Instead, the
channel known as Java Virtual Machine (JVM) resides within the Oracle itself.
The Java program execution process is carried out in the dedicated portion of SGA
known as Java pool. For this reason, C programs might be better performers than
Java programs when invoked from PL/SQL.

Chapter 4

[137]

Calling a Java class method from PL/SQL
A Java class must be made available in the database for its access from a
PL/SQL program. Oracle provides a command-line utility tool known as
loadjava to perform the program loading activity. Internally, the loadjava
utility creates some schema objects such as tables and an index. Then the
class iles and source iles are loaded in PL/SQL as Java objects. The syntax
of the utility is as follows:

loadjava {-user | -u} username/password[@database] [option ...]

filename [filename]...

Whenever a Java class is loaded into the database through the command link utility,
JVM acknowledges the request. It loads the Java binaries and resources from the OS
location to the database library units. This operation is similar to the generation of
shared library units in an external C program access through PL/SQL.

The help regarding the loadjava command-line tool can be found using loadjava
-h | -help.

Uploading a Java class into the

database—development steps
The following steps can be followed to upload a Java class or source ile to
the database:

1. Prepare a Java class ile and place it at an OS location on the server.
2. Load the Java source or class ile from the command-line editor with the help

of the loadjava utility.

3. Create a call speciication or a PL/SQL subprogram to publish the
Java program.

4. Verify the execution of the Java class' method.

The loadjava utility—an illustration
As discussed earlier, a Java class ile can be uploaded into the database using
the loadjava utility of the command DOS shell. Once the Java program is
successfully loaded into the database, its metadata is record in the USER_OBJECTS
and USER_SOURCE data dictionary views. Lets us take up a case study to illustrate
the whole process.

Using Advanced Interface Methods

[138]

This is just a case similar to our last case study with C, we have a computational-
based utility method to add and multiply two numbers. You need a similar utility in
PL/SQL. Instead of rewriting the code again, you decide to use the same program in
PL/SQL through external procedures. This is demonstrated in the following steps:

1. Writing a Java class for demo purpose:

A mathematical utility class has been created to include two methods to add
and multiply two given numbers:

public class Compute {

 public static int Sum (int x, int y) {

 return x+y;

 }

 public static int Cross (int x, int y) {

 return x*y;

 }

}

2. Loading the Java class into the database:

Save the program in the C:\Labs\Java\ directory as ComputeSumCross.
java. Now, run the loadjava command-line tool to load the program into
the database.

C:\> CD C:\Labs\Java

C:\Labs\Java>loadjava -user ORADEV/ORADEV ComputeSumCross.java

The task completion is not conirmed by any message. Once the Java class is
loaded into the database, it is stored as a Java stored object in the schema. A
Java object can be queried from the USER_OBJECTS data dictionary view and
Java class source code can be viewed from the USER_SOURCE data dictionary
view. Let us check the details in the USER_OBJECTS view:

/*Query the Java objects in the schema*/
SELECT object_name, object_type

FROM USER_OBJECTS

WHERE TRUNC(created)=TRUNC(SYSDATE)

order by timestamp;

OBJECT_NAME OBJECT_TYPE

-- -------------------

SYS_LOB0000080347C00002$$ LOB

CREATE$JAVA$LOB$TABLE TABLE

SYS_C0014189 INDEX

JAVA$OPTIONS TABLE

Compute JAVA SOURCE

Compute JAVA CLASS

6 rows selected.

Chapter 4

[139]

In the preceding query result, note the objects which were created by the
loadjava utility; a CREATE$JAVA$LOB$TABLE table with an LOB column.
And, inally the class name, Compute, appeared as JAVA SOURCE and JAVA
CLASS in the query output.

3. Publishing the Java class method:

Similar to the C external program publishing, a call speciication is required
to map the Java class to a PL/SQL subprogram along with the parameter
mapping. A call speciication can be an Oracle stored procedure or a
function. The syntax for the call speciication looks as follows:
{IS | AS} LANGUAGE JAVA

 NAME 'method_fullname (java_type_fullname [, java_type_
fullname]...)

 [return java_type_fullname]';

Note that it is different from the one we discussed in the Executing external
C programs from PL/SQL section.

The following F_COMPUTE function contains a call speciication which maps
the Sum method of the Compute class to the PL/SQL function:

CREATE OR REPLACE FUNCTION F_COMPUTE_SUM (P_X NUMBER, P_Y NUMBER)

/*Specify the return type as per the method in the java class*/

RETURN NUMBER

AS

/*Specify the external programs base language*/

 LANGUAGE JAVA

 NAME 'Compute.Sum(int,int) return int';

/

Function created.

4. Verifying the Java class execution method:

As the F_COMPUTE_SUM function maintains the purity level of the database, it
can be called from the SELECT statement as follows:

SQL> SELECT f_compute_sum(200,482) FROM DUAL;

F_COMPUTE_SUM(200,482)

 682

Using Advanced Interface Methods

[140]

Creating packages for Java class methods
If a Java class code has several member methods, creating multiple standalone
subprograms would not be a scalable approach. It would be better to follow the
Java approach and create a package to encapsulate all Java class methods under
one schema object.

The Java class which we used in the illustration, in the The loadjava utility—an
illustration section, contains two methods Sum and Cross. But we published only
one of them for demonstration purposes. Let us see how we can publish both the
methods as one package. The Java class has been already loaded into the database.

The package speciication prototypes for the Java class methods as follows:

CREATE OR REPLACE PACKAGE PKG_ComputeJavaClass

AUTHID DEFINER

AS

/*Declare the functions with similar structure as that of Java
class methods*/

 FUNCTION F_GET_SUM(P_X NUMBER, P_Y NUMBER) RETURN NUMBER;

 FUNCTION F_GET_CROSS (P_X NUMBER, P_Y NUMBER) RETURN NUMBER;

END;

/

Package created.

The package body deines the call speciication for both the functions:

CREATE OR REPLACE PACKAGE BODY PKG_ComputeJavaClass

IS

/*Attach the call specification for each function*/

 FUNCTION F_GET_SUM(P_X NUMBER, P_Y NUMBER) RETURN NUMBER IS

 LANGUAGE JAVA

 NAME 'Compute.Sum(int,int) return int';

 FUNCTION F_GET_CROSS (P_X NUMBER, P_Y NUMBER) RETURN NUMBER IS

 LANGUAGE JAVA

 NAME 'Compute.Cross(int,int) return int';

END;

/

Package body created.

Chapter 4

[141]

Now, we have mapped all the Java class methods with the packaged functions
through call speciications:

SQL> SELECT PKG_ComputeJavaClass.F_GET_SUM(293,182) FROM DUAL;

PKG_COMPUTEJAVACLASS.F_GET_SUM(293,182)

 475

SQL> SELECT PKG_ComputeJavaClass.F_GET_CROSS(23,43) FROM DUAL;

PKG_COMPUTEJAVACLASS.F_GET_CROSS(23,43)

 989

Summary
This chapter has covered the philosophy, architecture, and support for external
routines in PL/SQL. We learned the external routine concepts from basic to advanced
level. We demonstrated the execution of C and Java programs as external procedures.

In the next chapter, we will learn a fresh application data security feature known as
Virtual Private Database

Practice exercise
1. Which of the following statements are true about the extproc process?

a. It loads the shared library of the external C program.

b. It is started by the PL/SQL runtime engine.

c. It is a session speciic process.
d. The extproc process compiles the C program while loading.

2. Oracle 7 introduced the external procedure feature for sending mails from
PL/SQL.

a. True

b False

Using Advanced Interface Methods

[142]

3. Determine the effect of dropping the library object which has been used in a
PL/SQL call speciication and in use:

a. The PL/SQL wrapper method gets invalidated

b. The shared library gets corrupted

c. The PL/SQL wrapper method still works ine as it has been already
executed once

d. The PL/SQL wrapper method gives no output

4. Examine the following TNSNAMES.ora and LISTENER.ora entries and choose
the correct option:

//TNSNAMES.ora

ORACLR_CONNECTION_DATA =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))

)

 (CONNECT_DATA =

 (SID = extproc)

 (PRESENTATION = RO)

)

)

//LISTENER.ora

SID_LIST_LISTENER =

(SID_LIST =

 (SID_DESC =

 (SID_NAME = CLRExtProc)

 (ORACLE_HOME = C:\ORCL\11.2.0\dbhome_1)

 (PROGRAM = EXTPROC1521)

 (ENVS= "EXTPROC_DLLS=ONLY:C:\ORCL\product\11.2.0\dbhome_1\BIN\
Ext.dll")

)

)

LISTENER =

 (DESCRIPTION_LIST =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))

 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))

)

)

Chapter 4

[143]

a. The KEY value under ADDRESS of ORACLR_CONNECTION_DATA
must be extproc.

b. The SID value under CONNECT_DATA of ORACLR_CONNECTION_DATA
must be CLRExtProc.

c. The KEY value under ADDRESS of LISTENER must be extproc.

d. The PROGRAM value of SID_LIST_LISTENER must be extproc.

5. Which of the following are true statements about the loadjava utility?

a. It generates a shared library for Java programs.

b. It loads the Java program into the Oracle database.

c. The loadjava utility requires a Java compiler to run.

d. It loads the Java class ile into the Java pool in the database instance.

6. External programs in Java don't require the shared libraries to be executed
from PL/SQL.

a. True

b. False

7. An external C program looks like this:

#include<stdio.h>

#include<conio.h>

int GetDouble(int num)

{

 return num * 2;

 getch();

}

The PL/SQL wrapper method looks like this:

CREATE OR REPLACE FUNCTION F_GET_DOUBLE (P_NUM NUMBER)

RETURN NUMBER

AS EXTERNAL LIBRARY NUMLIB

NAME "GETDOUBLE"

LANGUAGE C

PARAMETERS (P_NUM INT);

Using Advanced Interface Methods

[144]

When you call the PL/SQL wrapper, you get the following exception:

DECLARE

*

ERROR at line 1:

ORA-06521: PL/SQL: Error mapping function

ORA-06522: Unable to load symbol from DLL

ORA-06512: at "ORADEV.F_GET_DOUBLE", line 1

ORA-06512: at line 4

Identify the cause for this exception:

a. The NUMLIB library has been incorrectly placed.

b. The C program has syntactical errors.

c. The C program name in the call speciication (PL/SQL wrapper)
should be GetDouble instead of GETDOUBLE.

d. The extproc process is not working properly

Implementing VPD with Fine

Grained Access Control
Data security has always been a questionable criterion for a solution which promises
data repository. "How much is my data secure or vulnerable?" We make a lot of
effort on the concepts of data storage, fetch optimization, and its integrity to ensure
and evolve a concrete database philosophy. But the last question hovers every time
the database design and security paradigms are planned. The Oracle database offers
multiple solutions in variety of areas to enforce best security strategies on the data.
Some of the focused areas have been securing user accounts, their authentication,
their roles and privileges, data encryption, data audit, and data vaulting.

In this chapter, we will discuss one of the data security features which builds up
a protocol or mechanism to impose latent dynamic querying criteria on the data
selection. The security feature comes up with the name Fine Grained Access Control
which is also known as Virtual Private Database. The processing of the security
scheme in the database appears transparent to the logged in user. Moreover, since
the security scheme is implemented at the database level, it cannot be skipped too.
Thus, the security scheme is becoming a stringent security channel.

The feature was introduced in Oracle9i. Later in Oracle 10g, the security feature
was extended to include Fine Grained Access Control features. As a result, data
restriction could be imposed upon the selection of columns too.

We will understand the concept and walk through its implementation under the
following topics:

•	 Fine Grained Access Control

	° Overview

	° Virtual Private Database—the alias

	° How FGAC or VPD works

Implementing VPD with Fine Grained Access Control

[146]

•	 VPD implementation—outline and components

	° Application context

	° Policy function deinition and implementation of Row Level Security
	° Associating a policy using the DBMS_RLS package

•	 VPD implementation—demonstrations

	° Assignment 1: Implement VPD using a simple security policy

	° Assignment 2: Implement VPD using the application context

•	 VPD policy metadata

•	 Policy utilities—refresh and drop

Fine Grained Access Control
In this section, we will discuss about Fine Grained Access Control.

Overview
The authoritative rules (as referred to above) enable the security at a table row or a
column. This feature limits the access to the secured data only for the users who are
authorized for it. The feature is known as Fine Grained Access Control (FGAC).
The FGAC security feature imposes row-level and column-level security so that only
privileged users can see them. The feature creates a private window of a table for the
currently logged in user who can view only the data for which he is authorized.

Prior to FGAC, it used to be a cumbersome activity to decide the data authorization
barriers and segregate the schema or the data, as required. Maintenance of multiple
users and their multiple schemas used to be a DBA's overhead.

In a multiuser database environment, users are required to access the information
authorized for them. One way could be that admin holds the schema and all
database objects and creates synonyms for the user who intends to use it. But
note that it is an object level security not the data security. FGAC provides the
solution to such scenarios by creating virtual data groups of a table. By nature of its
implementation, FGAC is also known as Virtual Private Database (VPD).

Chapter 5

[147]

Virtual Private Database—the alias
Suppose, an organization "ABC" wants its employees to view only those employees'
details who are currently working in his/her department. He/she cannot query the
employee working in all other departments. One option is to create the employee
table (of course, with the same structure) separately for each department. The
second option is to always be reminded of appending a WHERE clause in the queries
and DML statements. The third option is to automate the second option through
FGAC. It is through the implementation of FGAC where the DEPTNO (department
number) column of employees table can be secured as a policy. The security on the
department number column demonstrates the Row Level Security (RLS) and the
portion of the data authorized and available for a user in a particular department
appears apparently as a virtual database. Thus, the name Virtual Private Database,
evolves as an alias for FGAC.

Since the VPD protocol restructures the query and affects the query access path, it is
important to learn the performance implications of the policy execution. It is true that
the VPD implementation affects the query performance by two factors. The irst factor
is the processing of the security protocol implemented under VPD. The second factor is
the predicate clause resulting from the VPD protocol processing. The predicate clause,
along with the index(indexes) on the columns, participates in the query optimization.
It affects the net query cost and, hence, the query performance. The predicate also
appears in the explain plan of the query. We will see the performance implications
resulting from the predicate in the demonstrations discussed later in this chapter.

Now, let us understand the working of Row Level Security in VPD.

How FGAC or VPD works?
As per our explanation on VPD, the DEPTNO column in the employees table is
secured for RLS. This implies that an employee working in department number 10
can view the employees who are working in department number 10. The users in the
respective departments can view only the marked data portions from the following
employees' data:

SELECT * FROM employees;

 EMPNO ENAME DEPTNO

---------- ---------- ----------

 7782 CLARK 10

 7839 KING 10

 7934 MILLER 10

 7566 JONES 20

 7902 FORD 20

 7876 ADAMS 20

Implementing VPD with Fine Grained Access Control

[148]

 7369 SMITH 20

 7788 SCOTT 20

 7521 WARD 30

 7844 TURNER 30

 7499 ALLEN 30

 7900 JAMES 30

 7698 BLAKE 30

 7654 MARTIN 30

14 rows selected.

FGAC works with policies. A policy can be created for the DEPTNO column in the
employees table. This policy would be associated to the employees table and
assigned to the users. As soon as the user logs in to the database, the policy gets
activated. The activated policy automatically appends a WHERE clause predicate
to the SELECT statement on the employees table.

Programmatically, if a VPD protected user from department number 20 ires the
following query:

SELECT empno, ename, sal

FROM employees;

Oracle would implicitly modify this query by appending a WHERE clause to it and it
would look like the following:

SELECT empno, ename, sal

FROM employees

WHERE deptno = 20

The SELECT query, as shown in the previous code snippet, is the one processed by
the optimizer. Similar implementation works for the department numbers 10 and
30. This implicit appending of a clause creates a virtual partition of the table for the
users. They have access to the restricted data in the tables. This strategy prevents
manipulative actions in the data from unauthorized users.

VPD is unsupported for DDL commands such as
TRUNCATE or ALTER.

Salient features of VPD
Some important features of VPD are as follows:

•	 A VPD security policy is a rule deinition which is required to enforce a
privacy rule appropriate for the current logged in database user.

Chapter 5

[149]

•	 Security policy can be associated to the columns in a table or a view. They
can be applied to SELECT, INSERT, UPDATE, INDEX, and DELETE statements.

•	 Multiple security policies can be enforced on a table or view.

•	 Policy groups can be created to group multiple policies within them.
In this way, multiple policies can be associated to a table or a view in
a single attempt.

•	 VPD objectives are limited only up to data access operations (query and
DMLs). It does not operate on data deinitions (DDL):

VPD

benefits

Simplicity-

One time

implementaion Flexibility-
Flexible security

policies for

different SQL

actions

Security-

Ensures

application

security

VPD implementation—outline and
components
The development steps of VPD implementation is demonstrated in the lowchart
as follows:

•	 Creation of an application context: The application context is a collection of
variables whose values, once set, remain the same and are available in the
same session. The variables are known as attributes. Each session accessing
the same application context attributes can have different values.

•	 Create the context key and value: Create the trusted program to set the
context using DBMS_SESSION.SET_CONTEXT. During the creation of the
context, Oracle does not verify the existence of the program being speciied.
It relies on the trust of the user to create and use a program with the same
name to set the context attributes. Therefore, the program is referred to
as trusted.

Implementing VPD with Fine Grained Access Control

[150]

•	 Set the context key explicitly or through a Logon trigger: The context must
be set for the whole session or just before each call. System-level Logon
triggers are also capable of scheduling the context key assignment as soon
as the user logs in. Performance implication could be a considerable factor
to choose the appropriate method of context setting. By method of their
processing, the Logon trigger method would yield a better performance since
the trigger would be executed once at the database logon only. On the other
hand, an explicit assignment would be executed once for each query.

•	 Create Policy function: The policy function prepares the predicate using the
context key and value.

•	 Associate the policy function to a database table or view: A policy can be
associated using the DBMS_RLS package.

Before moving on to the VPD implementation in the database, let us discuss the
crucial components of VPD and their desirable features.

Application context
Oracle VPD policies use the application context to set the WHERE clause predicate for
a query. Application contexts are session variables which hold relevant information
about a database user and the session. It is recognized as a pair of Name-Value pair
under a Namespace (also called label). Namespaces such as USERENV are predeined in
the Oracle Server which retain session information such as DB_NAME, SESSION_USER,
and so on.

The value of an attribute under an application context can be retrieved through
an Oracle built-in function SYS_CONTEXT. The SYS_CONTEXT function accepts the
context name and its attribute as the input parameter. The function does not validate
the input context name. The function does not raise any exception if the context or
attribute speciied as the argument does not exist. However, for the USERENV context,
the function raises an exception called ORA-02003: invalid USERENV parameter, if a
non-existing attribute is speciied.

User deined application contexts can be created by the DBA or the user who
enjoys the CREATE ANY CONTEXT privilege, using a trusted application package.
An application context can be created as local (session speciic) or global.

A local context is accessible only within the session of its creator. The attributes along
with their values, are stored in User Global Area (UGA). The attributes of a local
context can be queried along with their values under SESSION_CONTEXT view.

Chapter 5

[151]

A global context can be accessed by all the user sessions. The attributes along with
their values, are stored in System Global Area (SGA). The attributes of a global
context can be queried along with their value in the GLOBAL_CONTEXT view.

Syntactically, creation of a user deined context looks like the following:

CREATE CONTEXT [CONTEXT NAME] USING [TRUSTED PACKAGE][CONTEXT TYPE]

In the above syntax, the context type can be ACCESSED GLOBALLY or ACCESSED
LOCALLY. By default, a context is created as local that is, ACCESSED LOCALLY.
For demonstrations, we will work with local contexts.

For example, the context DB_NAME displays the current database name in use as
shown in the following code snippet:

SQL> SELECT SYS_CONTEXT('USERENV','DB_NAME') FROM DUAL;

SYS_CONTEXT('USERENV','DB_NAME')

Orcl

A user is not allowed to update the USERENV application context
attribute values except for a few attributes. The modiiable attributes
are CLIENT_INFO, CLIENT_IDENTIFIER, CURRENT_SCHEMA_
INFO, and NLS_DATE_FORMAT.

Now, let us examine how to create a user deined context.

A DBA or a user with the CREATE ANY CONTEXT privilege creates the context using
a trusted package of a trusted user. The trusted package is a database package or a
stored procedure which controls the values of context attributes. The value of the
attributes in a context can be modiied only through this trusted package. At the
time of creation of the context, the package is not veriied by the server. The context
creation is thus, based on the trust that the package exists and is valid.

Creating a context is just creating the namespace. It still does not have any context
keys and their values. The trusted package provides the context variables key and
its value:

/*Connect as DBA*/

SQL> CONN sys/system AS SYSDBA

Connected.

/*Grant CREATE ANY CONTEXT, DROP ANY CONTEXT privileges to ORADEV*/

SQL> GRANT CREATE ANY CONTEXT, DROP ANY CONTEXT TO ORADEV

/

Implementing VPD with Fine Grained Access Control

[152]

Grant succeeded.

/*Connect as ORADEV*/

SQL> CONN ORADEV/ORADEV

Connected.

/*Create the context*/

SQL> CREATE CONTEXT demo_context USING P_SET_CONTEXT

/

Context created.

Once the context is created, let us create the trusted package. For demonstration,
we will create a parameterized standalone procedure to create a context key and
assign a value. Observe the use of DBMS_SESSION.SET_CONTEXT to set the values
for context attributes:

/*Connect as ORADEV*/

SQL> conn ORADEV/ORADEV

Connected.

/*Create the stored procedure to set the context attribute*/

SQL> CREATE OR REPLACE PROCEDURE P_SET_CONTEXT (P_VAL VARCHAR2)

 IS

 BEGIN

 /*Set the context using DBMS_SESSION*/

 DBMS_SESSION.SET_CONTEXT(NAMESPACE => 'DEMO_CONTEXT',

 ATTRIBUTE => 'COUNTRY',

 VALUE => P_VAL);

 END;

/

Procedure created.

Now, the context and its controlling program have been created. Query the context
key COUNTRY using the SYS_CONTEXT built-in. Ensure that the context and attribute
exist in this case:

/*Select the value of COUNTRY attribute under DEMO_CONTEXT namespace*/

SQL> SELECT SYS_CONTEXT('DEMO_CONTEXT','COUNTRY') FROM DUAL;

SYS_CONTEXT('DEMO_CONTEXT','COUNTRY')

--

It is a NULL value! It is because the context key COUNTRY is still unassigned. Set the
value of the context key COUNTRY by executing the context control program:

/*Assign value to the COUNTRY attribute through the context
controlling program*/

SQL> EXEC P_SET_CONTEXT('INDIA');

PL/SQL procedure successfully completed.

Chapter 5

[153]

Now, re-query the context key COUNTRY and check its value:

/*Select the value of COUNTRY attribute under DEMO_CONTEXT namespace*/

SQL> SELECT SYS_CONTEXT('DEMO_CONTEXT','COUNTRY') FROM DUAL;

SYS_CONTEXT('DEMO_CONTEXT','COUNTRY')

--

INDIA

Verify the context key by modifying its value and querying it again:

/*Modify the value of COUNTRY attribute through the context
controlling program*/

SQL> EXEC P_SET_CONTEXT('FINLAND');

PL/SQL procedure successfully completed.

/*Select the value of COUNTRY attribute under DEMO_CONTEXT namespace*/

SQL> SELECT SYS_CONTEXT('DEMO_CONTEXT','COUNTRY') FROM DUAL;

SYS_CONTEXT('DEMO_CONTEXT','COUNTRY')

--

FINLAND

Policy function deinition and implementation
of row-level security
The policy function creates the WHERE clause predicate using the application
context. It is an Oracle stored standalone function which must be created by the
user to be protected under VPD. The policy function should posses and follow
the following features:

•	 The function should accept the schema name and database object name as
input parameters. Though these parameters are not used in the function
body, the parameters are supplied by the DBMS_RLS package while creating
the policy. The sequence of parameters must be the schema name followed
by the object name.

•	 The function must return the predicate in a string format that is, the
condition to be used in the WHERE clause of a query. For example, [Column
name] = [Value]. Note that the condition must be a valid one.

•	 A policy can be STATIC, DYNAMIC, SHARED_STATIC, CONTEXT_SENSITIVE, or
SHARED_CONTEXT_SENSITIVE. The type of policy determines the frequency
of modiication of predicate clause. It is set while associating a policy to
the table, view, or synonym as policy_type parameter in DBMS_RLS.ADD_
POLICY. If nothing is speciied for the policy type, its behavior is dynamic.

•	 A dynamic policy uses context information for predicate clause and is
evaluated on every execution of the query.

Implementing VPD with Fine Grained Access Control

[154]

•	 The function should not perform selection or transaction on the table to be
protected under VPD.

The following table shows the differentiation amongst the policy types:

Policy type Comments When to Use

STATIC Oracle caches the
predicate clause
output in SGA which
is used for all further
executions of the query.

A static policy is used
when the same predicate
information can be applied
to every query. It yields
better performance since it is
executed only once.

DYNAMIC (Default) It is a default policy
type. Policy function
is executed for each
and every query on the
VPD protected table.

Dynamic policies are
preferred when the different
policy function and, hence,
a different predicate is
required for the SQL
statements. Since a dynamic
policy type is executed
automatically for each
execution, it decreases the
query performance.

SHARED_STATIC It is similar to STATIC
but a policy can be
shared among multiple
schema objects (tables).

A shared static policy is
preferred over static policies
when multiple tables share
the same policy function.
It is mostly suited for data
warehousing environments.

CONTEXT_SENSITIVE Policy function is
executed during
SQL parsing, only if
the local context has
been changed. If the
local context remains
unchanged, the
policy function is not
executed.

A context sensitive policy is
chosen when the predicate
information for a table varies
with the user or group.

SHARED_CONTEXT_SENSITIVE Oracle caches the
predicate in UGA
during SQL parsing
and a policy can be
shared among multiple
objects.

A shared context sensitive
policy is used where the
predicate information which
varies by user, can be shared
by multiple database objects
(tables).

Chapter 5

[155]

Associating a policy using the DBMS_RLS
package
The policy operations can be done using the DBMS_RLS package. The DBMS_RLS
package is used to add, drop, or refresh a security policy, enable or disable a policy,
and handle the policy groups. It is owned by the SYS user who must grant the
EXECUTE privilege on the DBMS_RLS package to a user who is intended to implement
aVPD policy within it.

The DBMS_RLS package subprograms are shown in the following table:

Subprogram Description

ADD_POLICY Adds a ine-grained access control policy to a table, view,
or synonym

DROP_POLICY Drops a ine-grained access control policy from a table,
view, or synonym

REFRESH_POLICY Causes all the cached statements associated with the
policy to be reparsed

ENABLE_POLICY Enables or disables a Fine Grained Access Control policy

CREATE_POLICY_GROUP Creates a policy group

ADD_GROUPED_POLICY Adds a policy associated with a policy group

ADD_POLICY_CONTEXT Adds the context for the active application

DELETE_POLICY_GROUP Deletes a policy group

DROP_GROUPED_POLICY Drops a policy associated with a policy group

DROP_POLICY_CONTEXT Drops a driving context from the object so that it will have
one less driving context

ENABLE_GROUPED_POLICY Enables or disables a row-level group security policy

DISABLE_GROUPED_POLICY Disables a row-level group security policy

REFRESH_GROUPED_POLICY Re-parses the SQL statements associated with a
refreshed policy

Implementing VPD with Fine Grained Access Control

[156]

VPD implementation—demonstrations
We will demonstrate two ways of VPD implementation. While the irst method is
simple association of a policy, the second demonstration uses an application context
for the same. Before we get into the actual implementation, let us have a look at the
employees table. Notice the explain plan for the SELECT query:

/*Select the EMPLOYEES table data*/

SQL> SELECT *

 FROM employees

/

/*Generate the explain plan for the above query*/

SQL> EXPLAIN PLAN FOR SELECT * FROM employees;

Explained.

/*Display the explain plan*/

SQL>SELECT * FROM TABLE(dbms_xplan.display);

Chapter 5

[157]

We will take up the same scenario of employees where the employee often
viewed other department's salaries and argued with their management. As
a result, management took a heavy step by limiting the access in its host
department only.

Assignment 1—implementing VPD using
simple security policy
In our irst assignment, we will see the implementation of a dynamic VPD policy on
a user owned database table employees. The policy ilters out only those employees
who are working in department number 20:

1. Creating the policy function:

Note the input parameters for the schema and object in the following policy
function deinition:
/*Connect to the user*/

Conn ORADEV/ORADEV

Connected.

/*Create the policy function*/

CREATE OR REPLACE FUNCTION f_get_dept_predicate(p_schema
varchar2,p_obj
varchar2)

RETURN VARCHAR2 IS

BEGIN

 /*Specify the predicate clause*/

 RETURN 'deptno = 20';

END;

/

Function created.

Implementing VPD with Fine Grained Access Control

[158]

2. Creating the security policy:

The security policy can be created using the DBMS_RLS.ADD_POLICY
subprogram. Notice that the table owner, the policy function owner, and
policy owner is the same that is, ORADEV. However, they may be different
from each other. This implies that a user A can implement a VPD policy P on
a table T owned by a second user B1, using a policy function owned by a user
B2. In such a case, the policy metadata is maintained by the user which owns
the VPD protected table. Refer to the following code snippet:

/*Connect as ORADEV*/

SQL> conn ORADEV/ORADEV

Connected.

/*Add a policy*/

BEGIN

 DBMS_RLS.ADD_POLICY

 (

 object_schema => 'ORADEV',

 /*The object (table) owner*/

 object_name => 'EMPLOYEES',

 /*The object name to be protected*/

 policy_name => 'EMP_DEPT_20',

 /*The security policy name*/

 function_schema => 'ORADEV',

 /*The security policy function owner*/

 policy_function => 'F_GET_DEPT_PREDICATE',

 /*The policy function name*/

 statement_types => 'select, insert, update, delete'

 /*The statement types which are to be protected under the VPD
security
 scheme*/

);

END;

/

PL/SQL procedure successfully completed.

3. Verifying the policy and observing the explain plan:

Query the employees table to verify the effect of the security policy:

SELECT * FROM employees;

Chapter 5

[159]

Generate the explain plan for the SELECT query on the VPD protected table
and compare it with the one we generated before the implementation:

/*Generate the explain plan for the above SELECT query*/

SQL>EXPLAIN PLAN FOR SELECT * FROM employees;

Explained.

/*Display the explain plan*/

SQL>SELECT * FROM TABLE(dbms_xplan.display);

Refer to the following screenshot for the output of the previous code snippet:

In the explain plan generated above, notice the Predicate Information
section. It lists the policy function predicate output. It is because employees
is a VPD protected table and the associated policy returns the predicate to
ilter the data. In addition, Oracle also uses the index on the predicate during
query optimization. Notice the usage of index IDX_EMPLOYEES_DEPTNO in the
above explain plan.

The Assignment 1 demonstration shows creation of a simple policy function and
association with the employees table. The drawback of the policy function is its
hardcoded predicate. Similar policy functions have to be created for every user
from each department. It again sounds like a hectic job!

Assignment 2—implementing VPD using an
application context
For the second demo, the last demonstration can be reset by dropping the
security policy enforced upon the employees table. A policy can be dropped
using DBMS_RLS.DROP_POLICY, as shown in the following code snippet:

/*Drop the policy EMP_DEPT_20*/

SQL>EXECUTE dbms_rls.drop_policy('ORADEV','EMPLOYEES','EMP_DEPT_20');

PL/SQL procedure successfully completed.

Implementing VPD with Fine Grained Access Control

[160]

Let us now move further to create an application context and use it in the VPD
policy implementation:

1. Creating an application context:

An application context can be created by the DBA or a DBA can grant the
CREATE ANY CONTEXT privilege to the user. We will go by the second one:

/*Connect as DBA*/

SQL> conn sys/system as sysdba

Connected.

/*Grant the privilege*/

SQL> grant create any context to oradev;

Grant succeeded.

/*Connect as ORADEV*/

SQL> conn ORADEV/ORADEV

Connected.

/*Create the context*/

SQL> CREATE CONTEXT EMPLOYEES USING PKG_CONTEXTS;

Context created.

2. Creating a trusted application package to set the context key value:

A package can be created to assign the context key value for the newly
created contexts:

/*Connect as ORADEV*/

SQL> conn ORADEV/ORADEV

Connected.

/*Create the package for setting the context*/

CREATE OR REPLACE PACKAGE PKG_CONTEXTS IS

 /*Prototype the procedure to set the context*/

 PROCEDURE P_SET_CONTEXT (P_DEPT NUMBER);

END;

Package created.

/*Create the Package body*/

 CREATE OR REPLACE PACKAGE BODY PKG_CONTEXTS IS

 /*Define the procedure to set the context*/

 PROCEDURE P_SET_CONTEXT (P_DEPT NUMBER)

 IS

 BEGIN

 /*Use DBMS_SESSION to set the content of DEPARTMENT
namespace*/

Chapter 5

[161]

 dbms_session.set_context(namespace => 'EMPLOYEES',
 attribute => 'DEPARTMENT' ,

 value => P_DEPT);

 END;

END;

/

Package body created.

3. Creating a Logon trigger to set the context for the user and restrict the
data access:

A Logon is a system-level trigger which ires as soon as the user logs into the
database. It will set the context for the entire user session:

/*Connect as SYSDBA*/

Conn sys/system as sysdba

Connected.

/*Create LOGON trigger to set the context as soon as a user logs
in*/

CREATE OR REPLACE TRIGGER ON_LOGON

/*Specify the event of trigger firing as AFTER LOGON*/

AFTER LOGON ON DATABASE

BEGIN

 /*Invoke the policy function from the ORADEV user */

 ORADEV.PKG_CONTEXTS.P_SET_CONTEXT(20);

END;

/

Trigger created.

The working of the above Logon trigger can be veriied. Disconnect and
reconnect the session as ORADEV. Select the user deined context using
SYS_CONTEXT built-in function for EMPLOYEES context:

/*Connect as ORADEV*/

SQL> conn ORADEV/ORADEV

Connected.

SQL> SELECT SYS_CONTEXT('EMPLOYEES','DEPARTMENT') FROM DUAL;

SYS_CONTEXT('EMPLOYEES','DEPARTMENT')

20

Implementing VPD with Fine Grained Access Control

[162]

4. Creating the policy function to get the predicate:

The policy function can be created using the SYS_CONTEXT function:

/*Connect as ORADEV*/

SQL> conn ORADEV/ORADEV

Connected.

/*Create the policy function*/

CREATE OR REPLACE FUNCTION f_get_dept_predicate(p_schema varchar2,
p_obj varchar2)

RETURN VARCHAR2 IS

BEGIN

 /*Return the predicate using SYS_CONTEXT*/

 RETURN 'deptno = SYS_CONTEXT(''EMPLOYEES'', ''DEPARTMENT'')';

END;

/

Function created.

5. Creating the security policy:

/*Connect as ORADEV*/

SQL> conn ORADEV/ORADEV

Connected.

BEGIN

DBMS_RLS.ADD_POLICY

(

object_schema => 'ORADEV',

object_name => 'EMPLOYEES',

policy_name => 'EMP_DEPT_20',

function_schema => 'ORADEV',

policy_function => 'F_GET_DEPT_PREDICATE',

statement_types => 'select, insert, update, delete'

);

END;

/

PL/SQL procedure successfully completed.

6. Verifying the working of VPD: Query the employees table to verify the
working of the policy:

SELECT * FROM employees;

Chapter 5

[163]

VPD policy metadata
The Oracle Server maintains the association information between the security
policies and schema objects in data dictionary views. The data dictionaries
available for this information is USER_DEPENDENCIES, ALL_DEPENDENCIES,
and DBA_DEPENDENCIES. The structure of the dictionary view is as follows:

SQL> DESC USER_POLICIES

 Name Null? Type

 OBJECT_NAME NOT NULL VARCHAR2(30)

 POLICY_GROUP NOT NULL VARCHAR2(30)

 POLICY_NAME NOT NULL VARCHAR2(30)

 PF_OWNER NOT NULL VARCHAR2(30)

 PACKAGE VARCHAR2(30)

 FUNCTION NOT NULL VARCHAR2(30)

 SEL VARCHAR2(3)

 INS VARCHAR2(3)

 UPD VARCHAR2(3)

 DEL VARCHAR2(3)

 IDX VARCHAR2(3)

 CHK_OPTION VARCHAR2(3)

 ENABLE VARCHAR2(3)

 STATIC_POLICY VARCHAR2(3)

 POLICY_TYPE VARCHAR2(24)

 LONG_PREDICATE VARCHAR2(3)

The policy created above can be queried from the dictionary view as follows:

SQL> SELECT policy_name,

 Policy_type,

 Static_policy,

 function,

 pf_owner

FROM USER_POLICIES

/

POLICY_NAME POLICY_TYPE STA FUNCTION PF_OWNER

--------------- --------------- --- -------------------- ---------

EMP_DEPT_20 DYNAMIC NO F_GET_DEPT_PREDICATE ORADEV

Implementing VPD with Fine Grained Access Control

[164]

In addition to the policy object information, the user deined contexts are also
maintained in the dictionary view [ALL | DBA]_CONTEXTS. The context EMPLOYEES
created above for Assignment 2 can be queried as follows:

SQL> SELECT * FROM ALL_CONTEXT;

 NAMESPACE SCHEMA PACKAGE

 --------------- --------------- -------------------------

 EMPLOYEES ORADEV PKG_CONTEXTS

Policy utilities—refresh and drop
Policy utility activities such as refreshing or dropping can be done through DBMS_
RLS package subprograms. Refreshing a policy pushes an enabled VPD protocol
to inherit the latest changes done to the policy and its dependents. Policy refresh is
required when the underlying referenced objects of the policy undergo changes. So
as to invalidate its dependent objects operationally during the policy refresh process,
all the cached statements associated with the policy are parsed again.

Notice that a disabled VPD policy cannot be refreshed.

The subprogram requires the policy owner, the table or view name, and the policy
name as the input parameters:

SQL> EXEC DBMS_RLS.REFRESH_POLICY('ORADEV','EMPLOYEES','EMP_DEPT_20');

PL/SQL procedure successfully completed.

Dropping a policy lifts the data restriction and full data is visible to all the users. Like
REFRESH_POLICY, the dropping subprogram also requires the policy owner, the table
or view name, and the policy name as input arguments:

SQL> EXEC DBMS_RLS.DROP_POLICY('ORADEV','EMPLOYEES','EMP_DEPT_20');

PL/SQL procedure successfully completed.

Chapter 5

[165]

Summary
In the chapter, we learned an eficient security concept called Fine Grained Access
Control. We started with the concept understanding and its components. Within the
prescribed scope of the chapter, we had a walk-through demonstration on the VPD
implementation with and without using the application contexts. Since VPD has
been emerging as one of the promising security features, we will recommend further
reading from the following links to touch other areas too:

•	 Oracle documentation: http://docs.oracle.com/cd/B28359_01/
network.111/b28531/vpd.htm

•	 OTN Network: http://www.oracle.com/technetwork/database/
security/index-088277.html

In the next chapter, we will handle one of the major application storage bottlenecks
that is, storage of large objects. We will understand various large objects' data types
and their management.

Practice exercise
1. Identify the correct statements about the working of Fine Grained

Access Control:

a. A table can have only one security policy.

b. Different policies can be used to protect SELECT, INSERT, UPDATE,
and DELETE statements on a table but not one.

c. The policy function returns the predicate information as
WHERE <Column> = <Value>.

d. Once associated, the FGAC policy cannot be revoked from the table.

2. A security policy can be associated to group of objects by the DBA.
State true or false.

a. True

b. False

3. Chose the correct statement about DBMS_RLS:

a. DBMS_RLS is used only for Row Level Security policies.

b. The package is owned by SYS.

c. It can create/drop/refresh policies and create/drop policy groups.

d. Using DBMS_RLS to set the policy degrades the application performance.

http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm
http://www.oracle.com/technetwork/database/security/index-088277.html
http://www.oracle.com/technetwork/database/security/index-088277.html
http://www.oracle.com/technetwork/database/security/index-088277.html

Implementing VPD with Fine Grained Access Control

[166]

4. Identify the correct statements about the context of an application:

a. A user who holds the CREATE CONTEXT privilege can create a context.

b. It is owned by the user SYS.

c. A user can check context metadata in USER_CONTEXTS.

d. The trusted package associated with the context must exist before the
context is created.

5. Arrange the sequence of VPD implementation using application contexts:

i. Creating policy function.

ii. Creating trusted package.

iii. Creating and setting application contexts.

iv. Associating a policy using DBMS_RLS.

a. iii, ii, i, iv

b. ii, iii, iv, i

c. iii, iv, i, ii

d. iv, i, ii, iii

6. All policies on different columns of the same table are collectively
known as Policy groups.

a. True

b. False

7. Identify the correct statements about the Policy types.

a. A shared static policy is an extension to the static policies where
multiple static policies can be shared among multiple users.

b. A shared static policy is an extension to the static policies where
a single static policy can be shared among multiple objects.

c. STATIC is the default policy type.

d. DYNAMIC is the default policy type.

Chapter 5

[167]

8. Pick the correct statement about the application contexts:

a. Only a DBA can create a custom application context and add attributes
under it.

b. The DBA can modify all USERENV attributes.

c. The package used for the context creation may or may not exist in
the schema.

d. Global contexts can be used by all the users on a server.

9. A policy of CONTEXT_SENSITIVE type executes the policy function once,
every time the query is reparsed, if the local context has been changed.

a. True

b. False

10. Identify the cause of the following exception:

SQL>SELECT * FROM employees;

select * from employees

 *

ERROR at line 1:

ORA-28110: policy function or package ORADEV.F_JOB_POLICY
has error

a. The policy function F_JOB_POLICY does not exist.

b. The policy function F_JOB_POLICY has not been speciied in DBMS_RLS.
ADD_POLICY to add the policy on the employees table.

c. The predicate returned by the policy function is not appropriate
for this query.

d. The VPD policy on the employees table is invalid and has errors.

Working with Large Objects
The challenge to manage information in a database has never been an iced cake.
Besides the fundamental support to data integrity, security, and optimal storage
mechanisms, the support to varied natures of data was equally challenging. With the
growing demands of application development, the nature of large and unstructured
data has been transformed from character based to binary based information.

Prior to the introduction of LOB data types in Oracle 8 Release, the LONG and
LONG RAW data types used to serve as the storage type for large data. Numerous
limitations associated with LONG data types and the need of a stable storage
mechanism for unstructured data led to the evolution of LOB data types and set the
stage for SecureFiles. While the character based large iles are identiied as CLOB,
the unstructured binary iles are treated as BLOB. Even the binary iles which are OS
location dependent can be stored in the database through a locator as BFILE data
types in the Oracle database.

In this chapter, we shall understand the Oracle's support to large objects. Large
objects can be a physical ile in the system. It can be any regular ile on the operating
system such as document, media iles, and so on. We will cover the LOB data type
handling concept under the following topics:

•	 Introduction to the LOB data types

•	 Understanding the LOB data types

•	 Creating the LOB data types

•	 Managing the LOB data types

•	 Working with the CLOB, BLOB, and BFILE data types

•	 Migrating from LONG to LOB

•	 Temporary LOB data types

•	 Using temporary LOBs

Working with Large Objects

[170]

Introduction to the LOB data types
Before the introduction of LOB data types, LONG and LONG RAW data types served as
the storage types for large data. But soon the incompetency of the data types added
the discomfort to the database developers and created an urgency for a stable data
type. Some of the limitations of LONG and LONG RAW are as follows:

•	 A table can have only one LONG or LONG RAW column. Also, the data
would always be stored inline with the record—thus dumping the same
segment all the time.

•	 A LONG or LONG RAW column can store data only up to 2 GB.

•	 LONG data type can support sequential access of data. Besides, there are
multiple restrictions associated with the usage of LONG data type. Limitations
such as single column speciication in a table and no possibility of indexing
add to the compatibility concerns.

With the introduction of LOB data types in Oracle8i, the limitations of LONG and LONG
RAW were overruled with multiple features. The LOB data types are CLOB, NCLOB,
BLOB, and BFILE. These data types not only provide a stable storage philosophy of
unstructured data in the database but also they can be accessed randomly. Let us
examine some of the key features of LOB data types in Oracle 11g:

•	 They are capable to store up to 128 TB of semi structure and
unstructured data.

•	 They can be stored in a separate segment LOBSEGMENT and can be
optionally stored in a different tablespace too.

•	 They support the national character set.

•	 They have Oracle built-in package DBMS_LOB to perform LOB operations.

After the release of Oracle 11g, LOB data type has become a signiicant and proven
member of the Oracle family. The earlier data types, LONG and LONG RAW, have been
turned obsolete for development purposes. However, the data types still appear in
dictionary views such as USER_VIEWS, USER_TRIGGERS, and USER_TAB_COLS to store
free text data. Despite the proven capability of LOB data types, Oracle has retained
the LONG and LONG RAW speciications in dictionary views.

Oracle 11g saw a major turnaround by boosting the storage
mechanism of LOB in the form of SecureFiles. SecureFile is an
advanced format of LOB storage which provides advanced
compression, encryption, and de-duplication features. The new
feature assures better storage, secure access mechanism, and
better performance in comparison to its earlier format.

Chapter 6

[171]

The LOB data type classiication chart is as shown in the following diagram:

Internal

Persistent Temporary

External

BFILE

LOB

Let us understand the LOB classiications briely.

Internal LOB
The LOB data which can be accessed from, or stored within the database, is internal
to the database. A database column of one of the LOB data types (CLOB, NCLOB, or
BLOB) is included in the table and a large object that is LOB value is stored in the
database. A PL/SQL variable of the LOB data type can be accessed in a PL/SQL
block. CLOB, NCLOB, and BLOB are internal LOB data types in Oracle. An internal
LOB data type can be used to specify the data type of a column, or attribute of a user
object type. In a PL/SQL block, internal LOB data types can be used as local memory
variables.

An internal LOB can be Persistent or Temporary. The classiication goes exactly with
the name. The LOB data which is stored physically in the database tables is a
persistent internal LOB. As it abides by the ACID (Atomicity, Consistency,
Isolation, and Durability) properties, it can participate in data operations
such as selection and transaction.

A temporary internal LOB is the one which is declared and accessed only within
a PL/SQL block.

External LOB
When the large object is a heavy ile, we use an external LOB data type to store
only its locator's value and not actually the LOB data. The ile still resides at the OS
location and not physically in the database. External LOBs are supported by the data
type BFILE. It is a read-only data type.

Since an external LOB follows only referential semantics to access an external object
in the database, they cannot participate in database transactions. BFILE is a read-only
data type where the external iles can be accessed only in read mode and cannot
be modiied.

Working with Large Objects

[172]

Understanding the LOB data types
As we came across the four LOB data types in Oracle, LOB structure can be split
into its "What" and "Where" components. While LOB value answers to the "What'
query, the LOB locator corresponds to the "Where" part. Together, they both make a
complete structure of an LOB. Let us understand the LOB components.

LOB value and LOB locators
The LOB value is the actual large ile to be loaded in the database. The LOB locator
points to the location of this ile on the system. It can be thought of as a pointer
which references the system location of a ile. A LOB locator is always stored inline
with the table row irrespective of where the LOB value is stored. During insertion
of the LOB data, the LOB column necessarily has the LOB locator component which
points to the actual location of the LOB value in the system. The LOB value is always
stored in the LOB segment which can be placed in the same or different tablespace.

For an internal LOB, the LOB segment has both the LOB locator and LOB value. The
external LOB has only the LOB locator because the LOB value is not stored in the
database but located externally on the OS.

BLOB or CLOB!
There are three types of internal LOB data types. They are briely explained
as follows:

•	 BLOB: It is a Binary Large Object data type. This data type is used to store
binary large iles such as PDFs, images, audios or videos, and so on. It is
analogous to the LONG RAW data type which was used before the induction of
LOB data types in Oracle.

•	 CLOB: This data type represents the Character Large Object data type which
stores the single byte character data in a database character set format. It is
compatible with the ixed length character set of the database. It is the data
type complimentary to the LONG data type.

•	 NCLOB: It is similar to the CLOB data type with the compatibility difference that
is, it can work for a variable width character set and the NLS settings of the
database. Besides, it supports the storage of a multibyte character set data.

Starting from Oracle 10g, Oracle can cast the CLOB data to the
VARCHAR2 data implicitly.

Chapter 6

[173]

BFILE
A BFILE data type column simply establishes and maintains the reference with the
ile which is located externally in the system. This implies that the BFILE value is
always a NULL component for the BFILE data type column or attribute. Unlike the
BFILE value, the BFILE locator always holds the pointer to the large ile or the BFILE
data. The ile can be externally located on the operating system, hard drive, compact
disks, or tape.

As the data held by this data type is read-only, it cannot participate in data
operations or transactions. Now, a question rises that if I delete the BFILE data, will
the external ile also get deleted? No, it will not. Only the BFILE locator is dropped
and de-referenced from the external ile.

A BFILE locator must be secured to avoid unauthorized access. File location must
be ensured at the server machine and a timeout must be set while reading a
nonexistent BFILE data. Besides, some tasks can be performed at the OS ile level.
These tasks include access permissions, available space, and OS maximum ile
size to secure BFILEs.

Temporary LOBs
A PL/SQL variable of the CLOB or BLOB data type in a session act is considered as a
temporary LOB. It is used to perform some LOB related operations and is placed in
the temporary tablespace. If a temporary LOB is stored in the database as a column
value, it becomes an internal LOB.

The temporary LOB must be freed once the related activities are over. Once it is
freed, the corresponding LOB locator is marked invalid.

Creating LOB data types
Similar to other data types, table columns which are meant for the storage of large
data must be declared as one of the LOB data types. This section focuses on the
elementary step of LOB handling that is, creation of LOB columns.

Directories
Directory is a vital component in Oracle used to access an operating system ile.
It interfaces the location path as a directory object. The DBA creates it and grants
read/write privileges to the concerned user.

Working with Large Objects

[174]

A directory is a nonschema object and can be used as a security barrier for the
iles located on the server or the client. A directory can be created as per the
following syntax:

CREATE DIRECTORY [DIRECTORY NAME] AS [OS LOCATION PATH]

Note that the directory creation does not validate the speciied location on
the system. This means that a directory can be created for a nonexistent path
on the system.

For example, the CREATE DIRECTORY statement, as shown in the following code
snippet, creates a directory for the path C:\Labs\:

/*Connect as SYSDBA*/

SQL> CONN sys/system AS SYSDBA

Connected.

/*Create directory for Labs folder located at the server machine*/

SQL> CREATE DIRECTORY MY_FIRST_DIR AS 'C:\Labs\';

Directory created.

/*Create directory for Labs folder located at the client machine
(ORCLClient)*/

SQL> CREATE DIRECTORY MY_CLIENT_DIR AS '\\ORCLClient\Labs\';

Directory created.

For the iles located on the server, the actual path has to be speciied
in the CREATE DIRECTORY statement.

For the iles which are located at the client machine, the CREATE
DIRECTORY statement requires a relative access path as [\\Machine
Name\File Location]. The directory path appears like a network
path of the shared client location. The location must be shared with
the server in read/write mode.

The access privileges on the directory can be granted using the GRANT command
as follows:

SQL> GRANT READ, WRITE ON DIRECTORY MY_FIRST_DIR TO ORADEV;

Grant succeeded.

Directory metadata can be found under the DBA_DIRECTORIES and
ALL_DIRECTORIES data dictionary views.

Chapter 6

[175]

Creating LOB data type columns in a table
A table with a LOB data type column can be created, as shown in the following code
snippet. The syntax demonstrates the creation of LOB data type columns prior to the
release of Oracle 11g.

Note the highlighted LOB storage clause in the following code snippet:

CREATE TABLE <table name>

 (Column list)

 [LOB (<lobcol1> [, <lobcol2>...])

 STORE AS

 [<lob_segment_name>]

 (

 [TABLESPACE <tablespace_name>]

 [{ENABLE | DISABLE} STORAGE IN ROW]

 [CHUNK <chunk_size>]

 [PCTVERSION <version_number>]

 [{ CACHE | NO CACHE [{LOGGING | NOLOGGING}]| CACHE READS
 [{LOGGING |
 NOLOGGING}]}]

 [STORAGE {MINEXTENTS | MAXEXTENTS}]

 [INDEX [<lob_index_name>] [physical attributes] [<storage_for_LOB_
index>]
])]

Introduction of SecureFiles and BasicFiles in Oracle 11g brought slight manipulation
in the above syntax. Now, the conventional LOB columns would be known as
BasicFiles, while the columns which wish to pursue the latest LOB scheme would be
declared as SecureFiles.

Check the new LOB speciication clause in the following syntax,

[LOB (<lobcol1> [, <lobcol2>...])

STORE AS [BASICFILE | SECUREFILE]

 (LOB Storage parameters)

Let us highlight some of the facts in the previous syntax:

•	 LOB storage clause: The LOB storage clause is optional for LOB.

•	 LOB_SEGMENT_NAME: It can be speciied for the LOB data type column in
the table. The segment with the given name is created for the LOBSEGMENT
segment type.

•	 TABLESPACE: It is used to reside target tablespace for the LOB data
type column.

Working with Large Objects

[176]

•	 ENABLE | DISABLE} STORAGE IN ROW: It ensures inline and out of the line
storage of the LOB data type data in the table.

•	 CHUNK: It chunks size for the LOB data type data.

•	 CACHE, LOGGING: It Enables caching and logging options for the LOB data
type data.

•	 STORAGE: It is used to provide extent speciication for storage clause.
•	 INDEX: It is used to provide LOB index speciication.

The EMP_LOB_DEMO table stores an employee ID, a document, and their image. Note
the LOB segment speciication, index speciication, and the clause to specify the
inline and out of the line storage in the following code snippet:

/*Create the table LOB_DEMO*/

CREATE TABLE EMP_LOB_DEMO

(

 EMPID NUMBER,

 DOC CLOB,

 IMAGE BLOB

)

LOB (DOC) --LOB storage clause for DOC

STORE AS LOBSEGMENT_DOC_CLOB

(

 CHUNK 4096

 CACHE

 STORAGE (MINEXTENTS 2)

 INDEX IDX_DOC_CLOB

)

LOB (IMAGE) --LOB storage clause for IMAGE

STORE AS LOBSEGMENT_IMG_BLOB

(

 ENABLE STORAGE IN ROW

 CHUNK 4096

 CACHE

 STORAGE (MINEXTENTS 2)

 INDEX IDX_IMAGE_BLOB

)

/

Table created.

Chapter 6

[177]

LOB metadata is stored in the USER_LOBS dictionary view. Note that the LOB
segment has been created for the particular LOB data type column in the table.
The segments can even be queried in the USER_SEGMENTS dictionary view.

The following query selects the LOBs created in the table script shown in the
previous code snippet:

/*Select LOB columns along with segment and index name*/

SQL> SELECT TABLE_NAME, COLUMN_NAME, SEGMENT_NAME, INDEX_NAME

FROM USER_LOBS

WHERE TABLE_NAME = 'EMP_LOB_DEMO'

/

TABLE_NAME COLUMN_NAME SEGMENT_NAME INDEX_NAME

------------ ------------- ------------------------------ -----------

EMP_LOB_DEMO DOC LOBSEGMENT_DOC_CLOB IDX_DOC_CLOB

EMP_LOB_DEMO IMAGE LOBSEGMENT_IMG_BLOB IDX_IMAGE_
BLOB

/*Select LOB segments to view the segment characteristics*/

SQL> SELECT segment_name,segment_type,segment_subtype,bytes,blocks

FROM USER_SEGMENTS

where segment_name in ('LOBSEGMENT_DOC_CLOB','LOBSEGMENT_IMG_BLOB');

Managing LOB data types
The LOB data management includes its interaction with the loading interface, data
manipulation strategies, and selection of the LOB data. The section makes certain
recommendations to manage internal LOBs, BFILEs, and temporary LOBs.

Working with Large Objects

[178]

Managing internal LOBs
An internal LOB data type that is, a CLOB or BLOB data type column can be
interacted through supported interfaces such as DBMS_LOB, JDBC, or OLE object
structure. In PL/SQL, LOB data is majorly managed through the DBMS_LOB package
which provides a wide variety of subprograms to populate the LOB data, manipulate
it, and extract relevant information such as length, size, and so on.

Few of the recommendations to manage the internal LOB are as follows:

•	 The LOB column can be initialized as NULL using EMPTY_BLOB() or
EMPTY_CLOB() functions.

•	 A CLOB can be populated through SQL or a text ile loaded from a PL/SQL
program. A BLOB should always be loaded through a PL/SQL block.

•	 Use of DBMS_LOB package is preferable for the LOB operations and activities.

•	 The LOB data can be modiied using the UPDATE statement or
DBMS_LOB subprograms.

Securing and managing BFILEs
A BFILE column is a LOB data type which has to be secured against malicious
activities resulting from unauthorized access. The reason behind this is the external
location of the ile on the operating system or external hardware. Unauthorized
access from PL/SQL can be ensured by regulating the access on the directory
object. The privilege to write data at the directory location must be restricted only to
authorized users, while other users should enjoy the read privilege only. The usage
of a directory object prepares the database to take an additional layer of security for
BFILEs after performing the varying security techniques from the external hardware.
A ile on the operating system can be secured against its access, nondesired
manipulative activities, and ile size restrictions at the operating system level.

Thereafter, once the BFILE data is populated in a fashion similar to internal LOBs,
the BFILE operations and interactions are carried out by the DBMS_LOB package.

A user can open only a deinite number of BFILEs in an active session. The session
level static initialization parameter SESSION_MAX_OPEN_FILES governs the number
of BFILEs to be opened in a session. Its default value is 10 and it resides in the
spfile[DB].ora parameter speciication ile. Once this limit is reached, no more
iles can be opened in the session. The value of the parameter can be altered using
the ALTER SESSION command.

Chapter 6

[179]

The following example illustration modiies the parameter SESSION_MAX_OPEN_
FILES to 25:

/*Connect as SYSDBA*/

Conn sys/system as sysdba

Connected.

/*Alter the session to modify the maximum open files in a session*/

ALTER SESSION SET SESSION_MAX_OPEN_FILES = 25

/

Session altered.

Managing BFILEs is similar to that of internal LOBs. While the DBA takes care of
the security at the OS level and database level, the developer codes the programs
to interact with the ile and populate its locator (rather BFILE locator) in the BFILE
column of a table. The DBA manages the ile system on the operating system or
external hardware, creates the database directory object, and decides upon the
directory access. A BFILE column can be initialized using the BFILENAME function.
The BFILENAME function establishes a reference to the ile at the speciied physical
directory location. In simple terms, it returns the BFILE locator:

FUNCTION BFILENAME(directory IN VARCHAR2, filename IN VARCHAR2)

RETURN BFILE;

In the previous syntax, directory is a valid database directory name and filename
is a ile located at the directory location. The function returns a BFILE locator
which can be simply assigned to a BFILE column in a table using INSERT/UPDATE
statement. Importantly, these external iles are accessed in read-only mode through
BFILEs; as a result, iles cannot be modiied. Instead, the BFILE locator can be
modiied to change the pointer to point to a different target.

Note that the same BFILENAME function is also used while populating an internal
LOB column from an external ile.

The DBMS_LOB package—overview
DBMS_LOB is the built-in Oracle package which provides API level interface for LOB
operations. The package DBMS_LOB provides subprograms to query the LOB, sets the
operating status, performs the transactional activities, reads BFILEs, and so on.

Security model
The package is owned by SYSDBA. A DBA must grant an EXECUTE privilege to the
user which seeks the usage of LOB operations.

Working with Large Objects

[180]

DBMS_LOB constants
The constants used by the DBMS_LOB package have been consolidated in the
following table:

Constant Deinition
DBMS_LOB constants

FILE_READONLY CONSTANT BINARY_INTEGER := 0;

LOB_READONLY CONSTANT BINARY_INTEGER := 0;

LOB_READWRITE CONSTANT BINARY_INTEGER := 1;

LOBMAXSIZE CONSTANT INTEGER := 18446744073709551615;

SESSION CONSTANT PLS_INTEGER := 10;

CALL CONSTANT PLS_INTEGER := 12;

DBMS_LOB option types

OPT_COMPRESS CONSTANT BINARY_INTEGER := 1;

OPT_ENCRYPT CONSTANT BINARY_INTEGER := 2;

OPT_DEDUPLICATE CONSTANT BINARY_INTEGER := 4;

DBMS_LOB option values

COMPRESS_OFF CONSTANT BINARY_INTEGER := 0;

COMPRESS_ON CONSTANT BINARY_INTEGER := 1;

ENCRYPT_OFF CONSTANT BINARY_INTEGER := 0;

ENCRYPT_ON CONSTANT BINARY_INTEGER := 2;

DEDUPLICATE_OFF CONSTANT BINARY_INTEGER := 0;

DEDUPLICATE_ON CONSTANT PLS_INTEGER := 4;

DBMS_LOB data types
The list of data types used by the DBMS_LOB package is as follows:

Data type Discription

BLOB Source or destination binary LOB

RAW Source or destination RAW buffer (used with BLOB)

CLOB Source or destination character LOB (including NCLOB)

VARCHAR2 Source or destination character buffer (used with CLOB and NCLOB)

INTEGER
Speciies the size of a buffer or LOB, the offset into a LOB, or the
amount to access

BFILE Large, binary object stored outside the database

Chapter 6

[181]

DBMS_LOB subprograms
The DBMS_LOB subprograms are listed in the following table:

Subprogram Description

APPEND procedure Appends the contents of the source LOB to the
destination LOB

CLOSE procedure Closes a previously opened internal or external LOB

COMPARE function Compares two entire LOBs or parts of two LOBs

CONVERTTOBLOB procedure Reads character data from a source CLOB or NCLOB
instance, converts the character data to the speciied
character, writes the converted data to a destination BLOB
instance in binary format, and returns the new offsets

CONVERTTOCLOB procedure Takes a source BLOB instance, converts the binary data in
the source instance to character data using the speciied
character, writes the character data to a destination CLOB
or NCLOB instance, and returns the new offsets

COPY procedure Copies all, or part, of the source LOB to the
destination LOB

CREATETEMPORARY
procedure

Creates a temporary BLOB or CLOB and its corresponding
index in the user's default temporary tablespace

ERASE procedure Erases entire or part of a LOB

FILECLOSE procedure Closes the ile
FILECLOSEALL procedure Closes all previously opened iles
FILEEXISTS function Checks if the ile exists on the server
FILEGETNAME procedure Gets the directory object name and ile name
FILEISOPEN function Checks if the ile was opened using the input

BFILE locators

FILEOPEN procedure Opens a BFILE

FRAGMENT_DELETE
procedure

Deletes the data at the given offset for the given length
from the LOB

FRAGMENT_INSERT
procedure

Inserts the given data (limited to 32 KB) into the LOB at
the given offset

FRAGMENT_MOVE procedure Moves the amount of bytes (BLOB) or characters (CLOB/
NCLOB) from the given offset to the new offset speciied

FRAGMENT_REPLACE
procedure

Replaces the data at the given offset with the given data
(not to exceed 32 KB)

FREETEMPORARY procedure Frees the temporary BLOB or CLOB in the default
temporary tablespace

Working with Large Objects

[182]

Subprogram Description

GETCHUNKSIZE function Returns the amount of space used in the LOB CHUNK to
store the LOB value

GETLENGTH function Gets the length of the LOB value

GETOPTIONS function Obtains settings corresponding to the option_types
ield for a particular LOB

GET_STORAGE_LIMIT
function

Returns the storage limit for LOBs in your
database coniguration

INSTR function Returns the matching position of the nth occurrence of the
pattern in the LOB

ISOPEN functions Checks to see if the LOB was already opened using the
input locator

ISTEMPORARY functions Checks if the locator is pointing to a temporary LOB

LOADBLOBFROMFILE
procedure

Loads BFILE data into an internal BLOB

LOADCLOBFROMFILE
procedure

Loads BFILE data into an internal CLOB

LOADFROMFILE procedure Loads BFILE data into an internal LOB

OPEN procedures Opens a LOB (internal, external, or temporary) in the
indicated mode

READ procedures Reads data from the LOB starting at the speciied offset
SETOPTIONS procedures Enables CSCE features on a per-LOB basis, overriding the

default LOB column settings

SUBSTR functions Returns part of the LOB value starting at the
speciied offset

TRIM procedures Trims the LOB value to the speciied shorter length
WRITE procedures Writes data to the LOB from a speciied offset
WRITEAPPEND procedures Writes a buffer at the end of a LOB

Rules and regulations
Here we shall discuss some of the basic validation rules for internal and external
LOBs. These validations provide the usage guidelines while working with LOBs
using the DBMS_LOB package.

Chapter 6

[183]

Internal LOBs
Internal LOBs deal with character and binary data. The important validations for
internal LOBs include the offset and LOB length. The usage guidelines are as follows:

•	 Length and offset value must be positive and deinite. For CLOB, the values
must be expressed as characters while for BLOB and BFILEs, the values must
be expressed as bytes. By default, the offset value is 1.

•	 Numeric arguments such as length, offset, newline, nth, and amount must
be a positive number not greater than LOBMAXSIZE (2^64).

•	 Subprograms with NULL inputs raise exceptions or return NULL output.

•	 Character function subprograms SUBSTR, INSTR, and COMPARE do not support
regular expressions or character pattern matching in parameters.

•	 The LOB must be locked while querying to avoid simultaneous transactions
on the same row.

BFILEs
External LOBs deal with externally located data. Most importantly, the ile must exist
physically at the location. The usage notes for external LOBs are as follows:

•	 BFILE locator is the mandatory component for all BFILE operations.

•	 The ile must physically exist at the directory location pointed by the
BFILE locator.

•	 Be reminded of the maximum open ile limit in each session. In case of an
abnormal termination of the program, the exception handler must close
all the open BFILEs.

•	 Maximum buffer size is 32767 bytes.

Working with the CLOB, BLOB, and
BFILE data types
By now, we have gathered enough understanding on the LOB data types. We will
now see the handling of LOB data in PL/SQL. For illustration purposes, we will use
the EMP_LOB_DEMO table, which has been created earlier.

Working with Large Objects

[184]

Initializing LOB data type columns
As we learned earlier the LOB column in the table contains only the pointer (LOB
locator), while the actual data is stored in the LOB segment. The LOB segment is a
different storage area in the same or different tablespace.

For initialization of a LOB data type variable or column, Oracle provides two built-in
constructor methods namely, EMPTY_CLOB() and EMPTY_BLOB(). These functions are
supported in SQL as well as PL/SQL. The functions assign a default LOB locator to
the CLOB and BLOB data type columns or variables. Let us check it out.

The PL/SQL block, shown in the following code snippet, declares a CLOB and BLOB
variable and initializes them in the declarative section. However, the initialization
can be made in the executable section also:

/*Start the PL/SQL block*/

DECLARE

/*Declare local variables of LOB types and initialize them with
corresponding constructor methods*/

 l_my_clob CLOB := EMPTY_CLOB ();

 l_my_blob BLOB := EMPTY_BLOB ();

BEGIN

 NULL;

END;

/

PL/SQL procedure successfully completed.

A CLOB or BLOB type column can be created with its default value, as shown in the
following code snippet:

/*Create the table with default initialization of LOB columns*/

CREATE TABLE dummy_lob

(

 my_clob CLOB DEFAULT EMPTY_CLOB(),

 my_blob BLOB DEFAULT EMPTY_BLOB()

)

/

Table created.

A table can be altered to add a column of CLOB or BLOB data type with its default
value for the existing data. It is shown in the following code snippet:

/*Alter the table to add a column with default initialization*/

ALTER TABLE dummy_lob

ADD your_clob CLOB DEFAULT EMPTY_CLOB()

/

Table altered.

Chapter 6

[185]

Inserting data into a LOB column
By using SQL, character data can be inserted only into a CLOB column. The BLOB
column can only be initialized with a LOB locator using the EMPTY_BLOB() function.
The reason is that BLOB is meant dedicatedly for a binary (or hexadecimal) data:

SQL> INSERT INTO EMP_LOB_DEMO

 VALUES

 (7900, 'I am the KING', EMPTY_BLOB());

1 row created.

SQL> COMMIT;

Commit complete.

SQL> SELECT * FROM emp_lob_demo;

 EMPID DOC IMAGE

---------- ------------------------------ ----------------------------

 7900 I am the KING

If character data is attempted for the BLOB column, Oracle raises the
ORA-01465: invalid hex number exception.

Populating a LOB data type using an
external ile
Data from a system's text ile can be loaded into CLOB using PL/SQL. Here, we will
demonstrate populating of CLOB and BLOB columns from a system's text and image
iles. Observe the populating steps.

The application database maintains a directory object which points to the deined
OS location. The OS location and the text ile content is shown in the following
screenshot. Note that we have two iles:

•	 LOB_data_ile.txt: The data has to be loaded into the CLOB column.

•	 MyLogo.JPG: The image ile has to be loaded into the BLOB column.

Working with Large Objects

[186]

We will try to read the text ile shown in the previous screenshot and load the
character data in the EMP_LOB_DEMO table. The demonstration steps are as follows:

1. The DBA creates the directory for the deined OS location:
/*Connect as SYSDBA*/

Conn sys/system as SYSDBA

Connected.

/*Create directory LOB_DIR for the specified OS Location*/

SQL> CREATE DIRECTORY LOB_DIR AS 'C:\MyORCLFolders\';

Directory created.

2. The DBA grants read/write access on the directory to the ORADEV user:

/*Grant read and write privilege on the directory LOB_DIR to user
ORADEV*/

SQL> GRANT READ, WRITE ON DIRECTORY DEMO_DIR TO ORADEV;

Grant succeeded.

3. The PL/SQL block loads the two iles into the table. Note the following
observations from the PL/SQL program:

	° The PL/SQL variables L_SOURCE_CLOB and L_SOURCE_BLOB are
assigned with the LOB locators using the BFILENAME function.

	° The temporary LOB columns are initialized with the EMPTY_CLOB()
and EMPTY_BLOB() constructor methods.

	° DBMS_LOB.OPEN is used to open an external LOB in read-only mode.

	° DBMS_LOB.GETLENGTH is used to ind the length of the external LOB.
	° The INSERT statement inserts the data and empty LOB locators

returning into the temporary LOB variables.

	° DBMS_LOB.LODFROMFILE populates the external BFILE data to the
temporary LOB variables.

	° The temporary LOB variables are updated in the EMP_LOB_DEMO table.

	° DBMS_LOB.CLOSE is used to close the external LOB.

Chapter 6

[187]

Refer to the following code snippet:

/*Connect as ORADEV*/

Conn ORADEV/ORADEV

Connected.

/*Enable the SERVEROUTPUT to display the block messages*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declaring LOB locator for CLOB and BLOB*/

 L_SOURCE_CLOB BFILE := BFILENAME('LOB_DIR', 'LOB_data_file.
txt');

 L_SOURCE_BLOB BFILE := BFILENAME('LOB_DIR', 'MyLogo.JPG');

/*Declaring offset value for both LOB columns*/

 L_AMT_CLOB INTEGER := 4000;

 L_AMT_BLOB INTEGER := 4000;

/*Declaring temporary LOB columns for both LOB columns*/

 L_CLOB CLOB := EMPTY_CLOB();

 L_BLOB BLOB := EMPTY_BLOB();

BEGIN

/*Opening the LOB locator in read only mode*/

 DBMS_LOB.OPEN(L_SOURCE_CLOB, DBMS_LOB.LOB_READONLY);

 DBMS_LOB.OPEN(L_SOURCE_BLOB, DBMS_LOB.LOB_READONLY);

/*Calculating the length of LOB locator*/

 L_AMT_CLOB := DBMS_LOB.GETLENGTH(L_SOURCE_CLOB);

 L_AMT_BLOB := DBMS_LOB.GETLENGTH(L_SOURCE_BLOB);

/*Create the record into LOB_DEMO table with empty LOB instance in
both CLOB and BLOB. Fetch the LOB column values into temporary LOB
variables*/

 INSERT INTO emp_lob_demo

 VALUES (7369, EMPTY_CLOB, EMPTY_BLOB())

 RETURNING DOC,IMAGE INTO L_CLOB, L_BLOB;

/*Load the temporary LOBs with the LOB locator and object pointed
by them*/

 DBMS_OUTPUT.PUT_LINE('Inserting text file into database. . .');

 DBMS_LOB.LOADFROMFILE(L_CLOB, L_SOURCE_CLOB, L_AMT_CLOB);

 DBMS_OUTPUT.PUT_LINE('Populating CLOB data is over');

 DBMS_OUTPUT.PUT_LINE('Inserting Image file into database. . .');

 DBMS_LOB.LOADFROMFILE(L_BLOB, L_SOURCE_BLOB, L_AMT_BLOB);

 DBMS_OUTPUT.PUT_LINE('Populating BLOB data is over');

Working with Large Objects

[188]

/*Close the LOB locators*/

 DBMS_LOB.CLOSE(L_SOURCE_CLOB);

 DBMS_LOB.CLOSE(L_SOURCE_BLOB);

/*Update the emp_lob_demo with the temporary LOB variable values*/

 UPDATE emp_lob_demo

 SET doc = L_CLOB, image = L_BLOB

 WHERE empid = 7369;

END;

/

Inserting text file into database. . .

Populating CLOB data is over

Inserting Image file into database. . .

Populating BLOB data is over

PL/SQL procedure successfully completed.

4. The PL/SQL executes successfully and the data gets populated from the
external iles into the database. Let us ire a SELECT query on the table:

/*Query the table to verify the loading*/

SQL> SELECT * FROM emp_lob_demo

 WHERE empid = 7369;

Note the data from the text ile LOB_data_file.txt in the DOC (CLOB data type)
column. The IMAGE (BLOB data type) column shows the hexadecimal code of the
image MyLogo.JPG. The DOC_SIZE parameter corresponds to the size of the text ile
and IMAGE_SIZE corresponds to the size of the image ile.

Let us check the size of the LOB data and compare with the actual counts:

/*Select the length of LOB column types*/

SQL> SELECT empid,

 DBMS_LOB.GETLENGTH(doc) doc_size,

Chapter 6

[189]

 DBMS_LOB.GETLENGTH(image) image_size

 FROM emp_lob_demo

 WHERE empid = 7369;

 EMPID DOC_SIZE IMAGE_SIZE

---------- ---------- ----------

 7369 75 11105

Selecting LOB data
In our above illustrations, we have already seen that the SELECT statement can
read the CLOB data successfully. For the BLOB data, the hexadecimal value for the
binary ile appears:

SELECT empid, doc, image

FROM emp_lob_demo

/

Working with Large Objects

[190]

Similarly, in a PL/SQL block, the CLOB data can be fetched from the table:

/*Enable the SERVEROUTPUT to display block messages*/

SET SERVEROUT ON

/*Start the Pl/SQL block*/

DECLARE

l_lob_len NUMBER;

/*Cursor to select the data from emp_lob_demo table*/

CURSOR C IS

SELECT empid, doc, image

FROM emp_lob_demo;

BEGIN

 /*Iterate the cursor in the FOR loop*/

 FOR I IN C

 LOOP

 /*Get length of the CLOB column*/

 l_lob_len := DBMS_LOB.GETLENGTH(i.doc);

 /*Display the CLOB data*/

 DBMS_OUTPUT.PUT_LINE('Printing DOC for '|| i.empid||':
 '||DBMS_LOB.SUBSTR(i.doc, l_lob_len));

 END LOOP;

END;

/

Printing DOC for 7900: I am the KING

Printing DOC for 7369: Loaded from LOB_DIR directory: I am Oracle 11g
Advanced PL/SQL Professional

PL/SQL procedure successfully completed.

Modifying the LOB data
If the CLOB data is small, the CLOB data type column can be updated using the
UPDATE statement. For example, we will try to update the DOC value for EMPID 7900
in the EMP_LOB_DEMO table:

/*Check the current value of CLOB column for EMPID 7900*/

SQL> SELECT doc FROM emp_lob_demo WHERE empid = 7900;

Chapter 6

[191]

DOC

I am the KING

/*Update the CLOB column for EMPID 7900*/

SQL> UPDATE emp_lob_demo

 SET doc = 'I am not a KING'

 WHERE empid = 7900;

1 row updated.

/*Verify the updated value of CLOB column for EMPID 7900*/

SQL> SELECT doc FROM emp_lob_demo WHERE empid = 7900;

DOC

I am not a KING

The character data populated from an external ile can also be updated. The changes
will be in the external text ile too. DBMS_LOB.WRITE and DBMS_LOB.WRITEAPPEND
achieve the CLOB writing operations.

The PL/SQL block below selects the DOC column for EMPID 7369 in a local CLOB
variable. It then appends a text to it and writes back in the text ile corresponding to
the LOB locator:

/*Start the PL/SQL block*/

DECLARE

 L_CLOB CLOB;

 L_WRITE_TXT VARCHAR2(50) := 'Write: Larry Ellison heads Oracle
Corp';

 L_APPEND_TXT VARCHAR2(50) := 'Append: Larry Ellison heads Oracle
Corp';

 L_BUFF_AMT NUMBER ;

 L_OFFSET INTEGER;

BEGIN

/*Selects the CLOB data in a local variable*/

 SELECT doc

 INTO l_clob

 FROM emp_lob_demo

 WHERE empid = 7369

 FOR UPDATE;

Working with Large Objects

[192]

/*Calculate the offset pointer value*/

 L_OFFSET := DBMS_LOB.GETLENGTH(L_CLOB) + 115;

/*Calculate the buffer amount*/

 L_BUFF_AMT := LENGTH(L_WRITE_TXT);

/*Write the data into the CLOB locator*/

 DBMS_LOB.WRITE (L_CLOB, L_BUFF_AMT, L_OFFSET, L_WRITE_TXT);

 L_BUFF_AMT := LENGTH(L_APPEND_TXT);

/*Append the data into CLOB locator*/

 DBMS_LOB.WRITEAPPEND (L_CLOB, L_BUFF_AMT, L_APPEND_TXT);

END;

/

PL/SQL procedure successfully completed.

COMMIT;

Commit complete.

Delete LOB data
A row from a table which contains the LOB data can be deleted to remove the LOB
data. If the scalar LOB data has to be removed, it is better to update the LOB column
with an empty LOB locator through EMPTY_CLOB() or EMPTY_BLOB().

For example, the IMAGE column of the EMP_LOB_DEMO table for EMPID 7369 can be
updated as follows:

UPDATE emp_lob_demo

SET image = EMPTY_BLOB ()

WHERE empid = 7369

/

1 row updated.

The same row could have been deleted but it would have also removed the DOC data.

Miscellaneous LOB notes
We will now overview certain LOB working and usage guidelines. We will
understand few uncategorized and miscellaneous facts about LOB data types.
In the development phases, it is necessary to understand the LOB column states
and access,

Chapter 6

[193]

LOB column states
A LOB column value in a table can exist in three states namely NULL, Empty, or
Populated. The comparison between them is as follows:

LOB state Locator exist Value exist LOB Length

NULL No No Null

Empty Yes No Zero

Populated Yes Yes Deinite value

Locking a row containing LOB
The row containing the LOB data must be selected using FOR UPDATE clause to
prevent other users working on the same row. Once the row is locked, the LOB
cannot be updated, modiied, or replaced.

Opening and closing LOBs
The LOBs can be opened in read-only or read/write mode. The mode is speciied
using a DBMS_LOB subprogram.

In read-only mode, the LOB can only be selected but cannot be updated or modiied
until the LOB is closed and re-opened in write mode:

DBMS_LOB.OPEN(L_SOURCE_CLOB, DBMS_LOB.LOB_READONLY);

In read/write mode, a persistent LOB participates in database transactions. It defers
the index maintenance on the LOB column until the mode is active.

DBMS_LOB.OPEN(L_SOURCE_CLOB, DBMS_LOB.LOB_READWRITE);

A LOB once opened in either of the modes, must be closed in the same session.

Accessing LOBs
Some key points to access LOB columns from the table are as follows:

•	 The character type LOBs (CLOB and NCLOB) follow the VARCHAR2 semantics
for usage in SQL functions and with SQL operators. The semantics are
supported and suggested up to 1 MB sized LOBs. The Oracle server
performs implicit conversion of the irst 4 KB data of CLOB data, when
used in SQL; 32 KB of CLOB data, when used in PL/SQL.

Working with Large Objects

[194]

•	 Concatenation, comparison, character functions, conversion functions, and
aggregate functions are supported by LOB type columns. The functions
such as INSTR, REPLACE, SUBSTR, CONCAT, TRIM, LTRIM, RTRIM, LOWER, UPPER,
NLS_LOWER, NLS_UPPER, LPAD, and RPAD can be used well with character
LOB columns.

•	 The LENGTH function is supported for all LOB types. The function DECODE
works only for CLOB. The value returned by LENGTH function is the same
as that returned by DBMS_LOB.GETLENGTH.

•	 The IS [NOT] NULL operator can be used with LOB columns in SQL.
These operators check the NULL property of only the LOB locator.

•	 Following operations are not supported in SQL:

	° DISTINCT

	° ORDER BY clause

	° GROUP BY clause

	° SET operators except UNION ALL (UNION, MINUS, INTERSECT)

	° Join queries

	° CREATE INDEX

LOB restrictions
The LOB data type healed the drawbacks of the manual mechanism of large object
storage. But there are a few restrictions as follows:

•	 LOB columns cannot behave as Primary Key.

•	 SQL Loader cannot recognize LOB column data as an argument input
to the clause.

•	 In shared-server mode, a BFILE column does not support session migration.

Migrating from LONG to LOB
Starting from Oracle 10g, a LONG data is convertible to a LOB data in a table. This
enhancement has enabled the migration of older data in LONG and LONG RAW
columns to equivalent LOB data types in Oracle. The data in the LONG type column is
mapped to CLOB or NCLOB data types and the data in the LONG RAW type columns is
mapped to the BLOB data type. It can be achieved through the ALTER TABLE statement,
where a LONG type column can be modiied to the LOB type column:

ALTER TABLE [table name]

MODIFY [LONG type column] [LOB type (CLOB | BLOB)];

Chapter 6

[195]

During migration, the Oracle server implicitly takes care of the data conversion and
movement from the LONG to LOB data type. A LONG, LONG RAW, or VARCHAR2 type of data
can be implicitly converted into CLOB or BLOB. Explicitly, the data can be converted
using TO_CLOB() and TO_BLOB() converter functions. During migration, the nullity
(NULL or NOT NULL) and default value is also carried away to the new columns. Let us
follow an illustration which migrates a LONG type column to the CLOB type column:

/*Create a table with LONG type columns*/

CREATE TABLE i_am_old

(

 id NUMBER,

 doc LONG

)

/

Table created.

/*Insert the sample data in the columns*/

SQL> INSERT INTO i_am_old

 VALUES

 (10,'Oracle 8i');

1 row created.

SQL> INSERT INTO i_am_old

 VALUES

 (20,'Oracle 9i');

1 row created.

SQL> INSERT INTO i_am_old

 VALUES

 (30,'Oracle 10G');

1 row created.

SQL> INSERT INTO i_am_old

 VALUES

 (40,'Oracle 11G');

1 row created.

SQL> commit;

Commit complete.

/*View the current data in the table*/

SQL> select * from i_am_old;

 ID DOC

---------- --------------------

 10 Oracle 8i

 20 Oracle 9i

 30 Oracle 10G

 40 Oracle 11G

Working with Large Objects

[196]

/*Migrate the LONG to LOB. Oracle implicitly takes care of the data
conversion from LONG to CLOB*/

SQL> ALTER TABLE i_am_old MODIFY doc CLOB;

Table altered.

/*Describe the table to verify the migration*/

SQL> DESC I_AM_OLD

 Name Null? Type

 ID NUMBER

 DOC CLOB

/*Re verify the data*/

SQL> select * from i_am_old;

 ID DOC

---------- -------------------

 10 Oracle 8i

 20 Oracle 9i

 30 Oracle 10G

 40 Oracle 11G

Using temporary LOBs
Temporary LOBs provide a temporary solution to hold a LOB data in a limited
scope—maximum up to a SESSION. It can be used in a PL/SQL block as a local
variable. A temporary LOB created using the DBMS_LOB package resides in temporary
tablespace. Note that neither the redo logs nor the rollback information is generated
for it. For this reason, they yield better performance within a block.

A temporary LOB can be created as any of the internal LOBs, but cannot be
initialized using empty LOB locator constructor methods (EMPTY_CLOB and EMPTY_
BLOB). They can be a handy solution when manipulative operations are performed
on the LOB type column in a PL/SQL block.

Temporary LOB operations
A temporary LOB allows most of the LOB operations such as create and update.
A temporary LOB, being a temporary component, must be freed-up as soon as
its related actions are over. The DBMS_LOB package provides the APIs to handle
temporary LOB actions.

Chapter 6

[197]

Managing temporary LOBs
The DBMS_LOB package offers certain subprograms to work with temporary
LOBs. DBMS_LOB.ISTEMPORARY checks whether the given LOB is temporary
or not. Syntactically, the overloaded subprogram is as follows:

DBMS_LOB.ISTEMPORARY (lob_loc IN BLOB)

 RETURN INTEGER;

DBMS_LOB.ISTEMPORARY (lob_loc IN CLOB CHARACTER SET ANY_CS)

 RETURN INTEGER;

In this syntax, LOB_LOC is the LOB locator. The LOB locator can be a CLOB or BLOB
type variable.

To create a temporary LOB, DBMS_LOB.CREATETEMPORARY can be used. It is, again, an
overloaded API which is shown in the following code snippet:

DBMS_LOB.CREATETEMPORARY

(

 lob_loc IN OUT NOCOPY BLOB,

 cache IN BOOLEAN,

 duration IN PLS_INTEGER := DBMS_LOB.SESSION

);

DBMS_LOB.CREATETEMPORARY

(

 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,

 cache IN BOOLEAN,

 duration IN PLS_INTEGER := 10

);

Based on this syntax, let us understand a few facts:

•	 lob_loc: It is the LOB locator.

•	 cache: It is a Boolean parameter which determines whether the LOB should
be in the buffer cache or not.

•	 duration: It speciies the life of the temporary LOB. It can be one of
SESSION, TRANSACTION, or CALL. By default, the duration of a temporary
LOB is SESSION.

DBMS_LOB.FREETEMPORARY frees the memory allocated for the temporary LOB. The
syntax for this subprogram is as follows:

DBMS_LOB.FREETEMPORARY (lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.FREETEMPORARY (lob_loc IN OUT NOCOPY CLOB CHARACTER SET
ANY_CS);

Working with Large Objects

[198]

Validating, creating, and freeing a
temporary LOB
Let us walkthrough a PL/SQL program to illustrate the usage of the temporary
LOB subprograms. Observe the creation, validation, and release of the temporary
LOB in the program:

/*Enable the SERVEROUT to display the block output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_TEMP_LOB CLOB;

 AMT NUMBER;

 OFFSET NUMBER := 5;

 L_WRITE VARCHAR2(100) := 'Oracle 8i introduced LOB types';

 L_APPEND VARCHAR2(100) := 'Oracle 11g introduced SecureFiles';

BEGIN

/*Create the temporary LOB*/

 DBMS_LOB.CREATETEMPORARY

 (

 lob_loc => L_TEMP_LOB,

 cache => true,

 dur => dbms_lob.session

);

/*Verify the creation of temporary LOB*/

 IF (DBMS_LOB.ISTEMPORARY(L_TEMP_LOB) = 1) THEN

 DBMS_OUTPUT.PUT_LINE('Given LOB is a temporary LOB');

 ELSE

 DBMS_OUTPUT.PUT_LINE('Given LOB is a persistent LOB');

 END IF;

/*Open the temporary LOB is read write mode*/

 DBMS_LOB.OPEN

 (

 lob_loc => L_TEMP_LOB,

 open_mode => DBMS_LOB.LOB_READWRITE

);

/*Write the sample data in the temporary LOB*/

 DBMS_LOB.WRITE

 (

 lob_loc => L_TEMP_LOB,

 amount => LENGTH(L_WRITE),

Chapter 6

[199]

 offset => OFFSET,

 buffer => L_WRITE);

 DBMS_OUTPUT.PUT_LINE

 (

 'Temporary LOB length after Write '||DBMS_LOB.GETLENGTH(L_TEMP_
LOB)

);

/*Append the sample in the temporary LOB*/

 DBMS_LOB.WRITEAPPEND

 (

 lob_loc => L_TEMP_LOB,

 amount => LENGTH(L_APPEND),

 buffer => L_APPEND

);

 DBMS_OUTPUT.PUT_LINE

 (

 'Temporary LOB length after Append '||DBMS_LOB.GETLENGTH(L_TEMP_
LOB)

);

/*Display the complete content of the temporary LOB*/

 DBMS_OUTPUT.PUT_LINE

 (

 CHR(10)||'Temporary LOB Content: '

);

 DBMS_OUTPUT.PUT_LINE

 (

 DBMS_LOB.SUBSTR

 (

 L_TEMP_LOB,DBMS_LOB.GETLENGTH

 (L_TEMP_LOB), 1

)

);

 DBMS_LOB.CLOSE(lob_loc => L_TEMP_LOB);

 DBMS_LOB.FREETEMPORARY(lob_loc => L_TEMP_LOB);

END;

/

Given LOB is a temporary LOB

Temporary LOB length after Write 34

Temporary LOB length after Append 67

Temporary LOB Content:

Oracle 8i introduced LOB typesOracle 11g introduced SecureFiles

PL/SQL procedure successfully completed.

Working with Large Objects

[200]

Summary
In this chapter, we learned the handling of large objects in Oracle. We started with
the need for a stable philosophy for large objects and understanding on the LOB data
types in Oracle. We learned managing and working with internal and external LOBs
with the help of illustrations and demonstrations. We wiped-up the chapter with a
brief demonstration on working with temporary LOBs.

In the next chapter, we will see an enhanced version of LOB, SecureFiles, which
has been released in Oracle 11g. We will see the archiving of an earlier LOB under
BasicFiles and evolution of SecureFiles as a more promising framework to store
large objects in the database.

Practice exercise
1. Internal LOBs can be used as attributes of a user-deined data type.

a. True

b. False

2. Internal LOBs cannot be passed as parameters to PL/SQL subprograms.

a. True

b. False

3. Internal LOBs can be stored in a tablespace that is different from the
tablespace that stores the table containing the LOB column.

a. True

b. False

4. You issue the following command to create a table called LOB_STORE:

CREATE TABLE lob_store

(lob_id NUMBER(3),

photo BLOB DEFAULT EMPTY_CLOB(),

cv CLOB DEFAULT NULL,

ext_file BFILE DEFAULT NULL)

/

Chapter 6

[201]

Identify the issue in the above script.

a. The table is created successfully.

b. It generates an error because a BLOB column cannot be initialized
with EMPTY_CLOB().

c. It generates an error because DEFAULT cannot be set to NULL for a CLOB
column during table creation.

d. It generates an error because DEFAULT cannot be set to NULL for
a BFILE column during table creation.

5. Identify the correct statements about the initialization of LOBs.

a. An internal LOB cannot be initialized in the CREATE TABLE statement.

b. The BFILE column can be initialized with the EMPTY_BFILE() constructor.

c. The EMPTY_CLOB() and EMPTY_BLOB() functions can be used to initialize
both NULL and NOT NULL internal LOBs of CLOB and BLOB types.

d. Initialization is a mandatory step for LOB type columns.

6. Which two statements are true about the FILEOPEN subprogram in the DBMS_
LOB package?

a. FILEOPEN can be used to open only internal LOBs.

b. FILEOPEN can be used to open only external LOBs.

c. FILEOPEN cannot be used to open temporary LOBs.

d. FILEOPEN can be used to open internal and external LOBs.

7. Temporary LOBs can be shared among the users which are currently
connected to the server.

a. True

b. False

8. Identify the correct statements about BFILEs.

a. A BFILE column in a table must be initialized with a dummy locator.

b. BFILEs cannot be used as attributes in an object type.

c. The BFILE data type is a read-only data type.

d. The external ile still persists if the BFILE locator is deleted or modiied.

Working with Large Objects

[202]

9. Pick up the incorrect statements about the Temporary LOBs.

a. It resides in the user's temporary tablespace.

b. It can be used during LONG to LOB data type migration.

c. It can be persistent for SESSION, TRANSACTION, or CALL.

d. Temporary LOB of BFILE type can be created.

10. A table SAMPLE_DATA has the following structure:

Name Null? Type

--------------- -------- ---------

SD_ID NUMBER

SD_SOURCE BFILE

You update a row in the table using UPDATE statement as follows:

UPDATE sample_data

SET sd_source = BFILENAME('SD_FILE', 'sample.pdf')

WHERE sd_id = 448;

But you receive the error—ORA-22286: insufficient privileges—on ile
or directory to perform FILEOPEN.

What could be the probable cause of the error?

a. The directory SD_FILE does not exist.

b. The ile sample.pdf does not exist.

c. The user does not have the READ privilege on the directory.

d. The ile sample.pdf is a read-only ile.

11. Choose the correct statement regarding migration of the LONG column
to LOB:

a. Use DBMS_LOB.MIGRATE to migrate LONG column data to
LOB column.

b. Alter the table to modify LONG column type to LOB type.

c. A LONG RAW column can be migrated to CLOB column.

d. The ALTER TABLE...MODIFY statement doesn't allows manipulation of
LOB storage parameters.

12. Choose the correct statement about the BFILENAME function:

a. It checks the existence of external ile and reads, if exists.
b. It returns the LOB locator of the ile which is located externally at the

directory location.

Chapter 6

[203]

c. It can be used for operations on external LOBs only.

d. The output of the BFILENAME function is one of the LOB data types.

13. Choose the correct option(s) for the usage of LOB data types in Oracle 11g:

a. BasicFiles are advanced LOBs which assure enhanced security
and performance.

b. SecureFiles are advanced LOBs which assure enhanced security
and performance.

c. LOB columns created prior to Oracle 11g cannot be migrated to
SecureFiles.

d. Older LOBs would be retained as BasicFiles in Oracle 11g.

14. You create a table, MYLOB, using the following script:

create table MYLOB

 (id number,

 doc clob);

Choose the correct statements from the following options:

a. The script runs successfully and the MYLOB table is created with system
generated LOB segment and LOB index.

b. The system generated LOB segment can be queried in the
USER_SEGMENTS view just after the CREATE TABLE
statement is run.

c. The table and the LOB are created in the default tablespace of
the user.

d. The CREATE TABLE statement raises an error as the LOB storage
clause is missing in the CREATE TABLE script.

Using SecureFile LOBs
Today, the application development has taken a new turn to catch up with the
growing business. The application environments employ some of the best strategies
to accommodate the varied nature of data. Surveys have revealed an astonishing
estimation that the nonstructured data grows annually by 65 percent in a typical
enterprise data-based application. This pace is accredited to the growing content
digitization, boost up rich user experience, web based structures, and physical ile
storage requirements.

In the previous chapter, we learned the traditional storage of large objects in Oracle.
Since its release in Oracle 8i, they have worked well and served at par with the
systems' requirements until Oracle 10g. The earlier LOB storage philosophy was
based on certain assumptions which by now, were transformed into limitations.
These assumptions were as follows:

•	 Size of the large object was expected to be in MBs

•	 Large objects would be less transactional

•	 No Encryption support

•	 The uniform CHUNK size resulted in data fragmentation—hence
the performance degrades

•	 No compatibility with Oracle RAC

Using SecureFile LOBs

[206]

Oracle 11g Release tried to cope up with the above limitations by evolving out a best
in the world feature called SecureFiles. SecureFile is an enhanced implementation
of traditional LOBs but with increased capability and secure data management.
The chapter discusses about the SecureFile feature in Oracle 11g under the
following topics.

•	 Introduction to SecureFiles

	° SecureFile LOB—understanding

	° SecureFile LOB features

•	 Working with SecureFiles

	° Enabling advanced features in SecureFiles

	° SecureFile metadata

•	 Migration from BasicFile to SecureFile

	° Online Redeinition method

Introduction to SecureFiles
Oracle 11g Release 1 introduced SecureFiles to recoup the limitations of conventional
LOBs in Oracle. The special engineered implementation of SecureFiles enables
enhanced performance, data security, and better storage optimization. The induction
of SecureFiles does not mean the extinction of older LOBs, instead older LOBs
still live with the name BasicFiles. The feature SecureFile has arrived as a superset
of LOBs in Oracle. Consequently, older LOBs, alias BasicFiles, can be smoothly
migrated to SecureFiles. Hereby, we shall refer to older LOBs as BasicFiles only:

SecureFile

Performance

Advanced

Security

Advanced Storage

Optimization

Deduplication

Compression

Encryption

Chapter 7

[207]

The SecureFile feature fuels up the database paradigms with advanced security
and advanced storage options. A SecureFile can be independently enabled for
transparent encryption, compression, and deduplication which contribute to
its security and intelligence. The best part of SecureFiles is that, now no more
different modeling strategies have to be adopted for structured data (relational)
and nonstructured data (large objects). With SecureFiles, the application can
manage relational and large object data under a single data model, single
security model, and with uniform data management principles.

SecureFile LOB—an overview
The term SecureFile barely declares its objective that is, securing iles within the
database. Though storing iles in the database was possible in earlier versions of
Oracle too, the enhancement in Oracle 11g directs the focus to the enhanced storage
scheme and packed security policy. Oracle 11g aims and works with a high level
content management strategy to maintain the enterprise data. The enterprise data
can come in a structured or unstructured form. This uniication of data management
architecture (rather re-architecture) has staged-up the storage platforms for large
objects and relational data in the database. In this section, we will discuss certain
architectural enhancements which build up SecureFiles for high performance,
eficient storage, tight security, and convenient manageability:

SecureFiles

Cluster

consistency

algos

New redo and

undo algo

New Network

Protocol

Space and

memory

management

New Disk

format

Using SecureFile LOBs

[208]

Architectural enhancements in SecureFiles
SecureFiles provide a wide infrastructure in the Oracle database to ensure secure
storage of all enterprise content. Notice that it does not resolve any LOB failures
but strengthens the storage mechanism of large objects in the Oracle database. This
strength of SecureFiles lies in its architectural enhancements. Let us take a brief
glance on the architectural components:

•	 Write Gather Cache (WGC): A new cache memory component caches the
SecureFile data up to 4 MB before writing the data on the disk. The cached
data is lushed-off either during COMMIT operations or implicitly by the
Oracle sever before the cache limit is reached. The WGC component is a part
of the buffer cache. The WGC enhancement optimizes the space allocation
of the LOB iles inside the database (on the disk) and reduces the LOB write
time by retaining it in the buffer.

A transaction uses only one WGC for all SecureFiles.

•	 Transformation management: The LOB transformation features are
ensured by the advanced compression and security options. The advanced
compression option implements deduplication and compression features,
while the advanced security option guarantees encryption of the LOB data.

•	 Variable CHUNK size: The ixed CHUNK size was a major drawback of
BasicFiles. The uniform CHUNK size used to work well for smaller data but it
failed for large sized iles. Subject to the frequency of read operations, a large
ile can be downloaded multiple times and a small ixed CHUNK size could
fragment the LOB data. SecureFiles uses variable CHUNK size (speciied by
the user) for storage and reading purposes of SecureFiles which internally
allocates variable space on the disk depending on the ile size.

•	 Enhanced Inode and Space management: SecureFiles could be staged only
on Automatic Segment Space Management (ASSM) tablespaces. The Inode
manager initiates the LOB data storage activity and requests the ondisk
space to hold the data. Space management takes care of allocation and de-
allocation of disk space. The Dynamic Space Manager intelligently handles
the allocation operations. It can block an allocation for write operations or
gathering up the space released from delete actions.

Chapter 7

[209]

•	 Prefetching: The fact looks intelligent that the LOB data would be
prefetched before the actual request has been made. This is made possible
by maintaining the ile access patterns for each ile. Based upon the access
frequency, the LOB data is fetched before the request. This intellectual
upgrade improves performance of the read operation and avoids network
congestion during read requests.

•	 No LOB index and high water mark contention: Unlike the participation of
the LOB index in BasicFiles, SecureFiles do not have any index association for
access navigation and space allocation operations. It might hit the performance
in online transaction processing (OLTP) environments, but SecureFiles
have eliminated such possibilities by cutting off the dependency on the LOB
indexes. SecureFiles deploy the data blocks itself for the LOB operations.

Similarly, if an LOB data is deleted, the freed space will be claimed by the
Oracle server automatically. For this reason, SecureFiles are not impacted
from the high water mark contention.

Besides the above architectural considerations, few enhancements were made
regarding the transfer of the LOB data over the network channel. A new
network protocol would now shoulder the responsibility of reading and writing
the LOB data in bulk directly between the client and the server. In addition,
the parameter speciication list has been reduced by strengthening the internal
implementation of the SecureFiles. The setting of FREELIST, FREELIST GROUPS,
PCTVERSION, and FREEPOOLS is not required to make the SecureFiles an intelligent
self-managed feature.

The following graphs compare the performance of the SecureFile against the BasicFile.
In these graphs, the ile size has been mapped against the Network Transfer Rate.

SecureFile versus BasicFile (Write)

0

50

100

150

200

250

300

1 2 3 4 5

SecureFile BasicFile

SecureFile BasicFile (Read)versus

0

50

100

150

200

250

300

1 2 3 4 5

A
xi

s
Ti

tl
e

SecureFile BasicFile

These graphs conclude that performance of write operations for large iles can be
improved by three times with SecureFiles. Similarly, the read performance of the
LOB data can be raised by four times with SecureFiles.

Using SecureFile LOBs

[210]

SecureFile LOB features
Apart from the logical features, the practical features are as follows:

•	 SecureFiles are supported in Oracle versions in and above the compatibility
11.1 and offers wide range capabilities such as deduplication, compression,
encryption, logging, and version maintenance as expected from a ilesystem.
Note that deduplication and compression features are the part of the licensed
Oracle advanced compression option.

•	 SecureFiles support Transparent Data Encryption (TDE) which was not
available with older LOBs. Note that the encryption feature is part of the
licensed Oracle advanced security option.

•	 The SecureFile feature is governed by a system initialization parameter
db_securefile. The admissible values of the parameter can be
PERMITTED, ALWAYS, FORCE, NEVER, and IGNORE.

•	 SecureFiles can be created only on the ASSM tablespace. By default, Oracle
11g enables ASSM in all its tablespaces. Check the value of the column
SEGMENT_SPACE_MANAGEMENT in DBA_TABLESPAES view to determine the type
[AUTO | MANUAL] setting of a tablespace.

•	 Besides the basic logging options, LOGGING and NOLOGGING, a new logging
level called FILESYSTEM_LIKE_LOGGING, has been introduced exclusively for
SecureFile LOBs to log only metadata changes. The new logging level allows
for the recovery of LOB segments during database failures.

For FILESYSTEM_LIKE_LOGGING, SecureFile LOB must
be in NOCACHE mode.

•	 Older LOBs, that is BasicFiles, can be migrated to SecureFiles using Online
Redeinition or the Partition method. The SecureFile features cannot be
imposed upon an existing database column or a partition.

•	 SecureFiles are easily accessible from client interfaces too
(using JDBC/ODBC).

•	 SecureFiles can be integrated with XML DB, Oracle Spatial, Oracle
Multimedia, and Oracle UCM.

Chapter 7

[211]

Working with SecureFiles
Before discussing the implementation of advanced features in SecureFiles, we
will see the creation of a SecureFile. The LOB clause makes the difference in
the CREATE TABLE statement and decides whether the LOB has to behave as a
BasicFile or SecureFile.

The interpreting behavior of the Oracle server depends upon a newly introduced
parameter called db_securefile. It can accept the values as follows:

•	 PERMITTED: This value allows DBA to create SecureFiles in the system of
appropriate compatibility that is 11.1 and higher. It is the default value
setting for the db_securefile parameter.

•	 ALWAYS: Apart from normal SecureFiles, all BasicFiles on ASSM tablespaces
are also treated as SecureFiles. But BasicFiles, which are created on a
non-ASSM tablespace, are still BasicFiles.

•	 FORCE: All LOB columns (both with SecureFile and BasicFile speciications)
are forced to be created as SecureFiles only. It does not allow any LOB
column to be created on a non-ASSM tablespace.

•	 NEVER: This value restricts the creation of SecureFiles.

•	 IGNORE: It ignores the creation of SecureFiles. All LOB columns are created
as BasicFiles.

The parameter can be set using ALTER [SYSTEM | SESSION] command. For
new installations, the parameter must be set as ALWAYS, as shown in the following
code snippet:

CONN sys/system as SYSDBA

Connected.

ALTER SYSTEM SET DB_SECUREFILE=ALWAYS

/

System altered

Similarly, in SESSION, the SecureFile feature can be enabled, as shown in the
following code snippet:

ALTER SESSION SET DB_SECUREFILE=PERMITTED

/

Using SecureFile LOBs

[212]

Once the parameter is set, the Oracle server gets adapted to the appropriate
behavior. The LOB clause in the CREATE TABLE statements has undergone the
following modiication:

LOB(COLUMN_NAME)

STORE AS [SECUREFILE | BASICFILE]

{STORAGE PARAMETERS [DUPLICATE | COMPRESS | ENCRYPTION]}

From the syntax you can see that there are three new parameters to explicitly
deine the intelligence level of the Oracle server. The advanced features such as
compression, deduplication, and encryption has to be speciied in the LOB storage
clause. By default, the features are disabled.

The CREATE TABLE statement creates a table called EMP_LOB_SECFILE which includes
an image and proile of an employee. Note the LOB speciication as a SecureFile. By
default, the LOB segments are staged at the default tablespace for the current user.
However, a different ASSM-enabled tablespace can be speciied against the LOB
storage clause.

Let us irst check the current settings of the db_securefile parameter at the
database server:

/*Connect as sysdba*/

CONN sys/system as SYSDBA

Connected.

/*Check the current setting of db_securefile*/

show parameter db_securefile

NAME TYPE VALUE

------------------------------------ ----------- ------------

db_securefile string PERMITTED

Execute the CREATE TABLE script in the ORADEV user:

/*Connect as ORADEV user*/

CONN ORADEV/ORADEV

Connected.

/*Create the table with SecureFile option*/

CREATE TABLE EMP_LOB_SECFILE

(

 empid NUMBER,

 deptno NUMBER,

 image BLOB,

 profile CLOB

)

Chapter 7

[213]

LOB(image) STORE AS SECUREFILE

LOB (profile) STORE AS SECUREFILE

/

Table created.

Now, let us see how the Oracle server maintains the SecureFile metadata.

SecureFile metadata
The SECUREFILE column in DBA_LOBS determines whether the LOB column is
a SecureFile or BasicFile:

/*Connect as sysdba*/

CONN sys/system as SYSDBA

Connected.

/*Query the DBA_LOBS for the new table*/

SELECT

 column_name,

 segment_name,

 encrypt,

 compression,

 deduplication,

 securefile

FROM DBA_LOBS

WHERE table_name='EMP_LOB_SECFILE'

/

COLUMN_NAME SEGMENT_NAME ENCR COMPRE DEDUPLICATION SEC

------------ ------------------------------ ---- ------ -------------
-- ---

IMAGE SYS_LOB0000080854C00003$$ NO NO NO YES

PROFILE SYS_LOB0000080854C00004$$ NO NO NO YES

Now, the above segment can be queried in the DBA_SEGMENTS dictionary
view as follows:

/*Connect as sysdba*/

CONN sys/system AS SYSDBA

Connected.

/*Query the segment view for SecureFile LOB segment*/

SELECT

 owner,

 segment_type,

 segment_subtype,

Using SecureFile LOBs

[214]

 tablespace_name

FROM DBA_SEGMENTS

WHERE segment_name='SYS_LOB0000080854C00004$$'

/

OWNER SEGMENT_TYPE SEGMENT_SU TABLESPACE_NAME

---------- ------------------ ---------- -----------------

ORADEV LOBSEGMENT SECUREFILE USERS

Note the value of the segment_subtype column in the view. It relects the purpose
behind the creation of a segment for a SecureFile. The USERS tablespace is the default
ASSM-enabled tablespace of the ORADEV user. The violation of this rule raises the
following exception:

ORA-43853: SECUREFILE lobs cannot be used in non-ASSM tablespace
"Tablespace_Name"

Besides the above dictionary views, SecureFile metadata for partitions can be queried
from DBA_PART_LOBS and DBA_LOB_PARTITIONS.

The read/write operations on the SecureFile columns are exactly the same as
described earlier. It involves creation of a database directory object, LOB locator,
and LOB data. It has been already demonstrated in the last chapter.

Enabling advanced features in SecureFiles
As we learned earlier in this chapter, the SecureFiles implementation has been
highly focused to raise storage and security levels. The transformation management
features—deduplication, compression, and encryption—are exclusively available
for SecureFiles. Thus, they get added-up to the database advanced compression
and security features. Let us pick up these features individually, demonstrate their
working, and learn their impacts.

Deduplication
With this feature enabled for the SecureFile, the Oracle server prevents the
duplication of the LOB data in a table or a partition. The Intelligent LOB Manager in
Oracle 11g maintains a unique secure hash for all the iles. An incoming LOB data is
checked against all the available secure hash codes. If the match is successful,
the hash code reference is retained against the table row. Thus, multiple insert
attempts of a single ile in the database are detected and a single copy is stored
in the database. On an unsuccessful match, the LOB data is stored on the disk.

Chapter 7

[215]

The deduplication feature improves the write operations and demonstrates the
optimized disk space management. Imagine that the performance boosts up when
one has to make 10 copies of each of the available iles in the database and there are
no physical write operations on the disk. Refer to the following screenshot:

Deduplication

Oracle

Server Secure Hash

The feature can be enabled by including the DEDUPLICATE | KEEP_DUPLICATES
keyword in the LOB storage clause. An existing SecureFile column can be modiied
to enable or disable the deduplication feature:

ALTER TABLE [TABLE NAME]

MODIFY LOB (COLUMN NAME)

(KEEP_DUPLICATES | DEDUPLICATE)

The DEDUPLICATE keyword enables the feature while KEEP_DUPLICATES disables it.
Its working is transparent to the users. Let us enable the deduplication feature in the
EMP_LOB_SECFILE table for the IMAGE column:

ALTER TABLE emp_lob_secfile

MODIFY LOB(image) (DEDUPLICATE)

/

Table altered.

Compression
The SecureFile compression feature introduces server-side compression of the
unstructured data. Once again, like deduplication, the feature is a member of
Oracle's advanced compression options. The Oracle server is intelligent enough
to perceive the beneits of the SecureFile compression. If the impact can make a
big difference in storage management, the LOB data is compressed. Otherwise,
compression is disabled for the LOB data and is stored as actual. The compression
feature brings in reduced I/O on the disk, minimal overhead of encryption, and
redo generation.

Using SecureFile LOBs

[216]

Table compression plays no role in the
SecureFile compression.

The compression feature can be enabled by specifying the COMPRESS [degree]
during the SecureFile speciication in the CREATE TABLE statement. Alternatively,
an existing column can be modiied using the ALTER TABLE statement as follows:

ALTER TABLE [TABLE NAME]

MODIFY LOB (COLUMN NAME)

(

 [COMPRESS {HIGH | MEDIUM | LOW} | NOCOMPRESS]

)

The COMPRESS keyword enables the server-side compression to use
industry-standard compression algorithms. The compression degree [HIGH |
MEDIUM] is responsible for latency in the data. MEDIUM is the default compression
level. The NOCOMPRESS mode disables the feature for the upcoming LOB data.

The PROFILE column in EMP_LOB_SECFILE can be compressed at the highest
degree as follows:

ALTER TABLE emp_lob_secfile

MODIFY LOB(profile) (COMPRESS HIGH)

/

Table altered.

Encryption
For the irst time, large objects in the database can be encrypted under transparent
data encryption (TDE) algorithm. The advanced security feature encrypts the data
(at the block level), backup, and redo ile on the disk. The database maintains the
encryption keys which are independent of the applications. The SecureFile supports
the following encryption algorithms:

•	 3DES168: Triple data encryption standard with 168 bit key size

•	 AES128: Advanced data encryption standard with 128 bit key size

•	 AES192 (default): Advanced data encryption standard with 192 bit key size

•	 AES256: Advanced data encryption standard with 256 bit key size

SYS-owned LOB columns cannot be
encrypted using TDE algorithms.

Chapter 7

[217]

A table can be altered to enable the encryption of a LOB column:

ALTER TABLE [TABLE NAME]

MODIFY LOB (COLUMN NAME)

(

 [ENCRYPT USING {ALGORITHM NAME} | DECRYPT]

)

OR

ALTER TABLE [TABLE NAME]

MODIFY

(

 Column_Name [ENCRYPT USING {ALGORITHM NAME} | DECRYPT]

)

The ENCRYPT keyword enables the encryption while the DECRYPT option disables it. A
column can be encrypted only once.

The TDE algorithm is an encryption system which encrypts the column's value with
a conidential key. An encrypted key can hold multiple encrypted columns of the
same table. There exists a second level of security where the column keys are again
encrypted with the database's master key. But note that none of the keys are stored in
the database. They reside within an Oracle wallet. An encryption wallet has to be set
as an external security module before enabling the feature for the LOB column. The
steps to encrypt the SecureFiles in a system are as follows:

1. Creating a wallet directory:

Create the wallet directory (C:\ExternalSecurity\Wallets\) to store the
TDE wallet. The default wallet directory is $ORACLE_HOME\admin\
[global_db_name]\wallet\. Oracle manages the default wallet location
implicitly. However, a new wallet working directory can be created to
explicitly manage the wallet operations and encryption activities.

It is the wallet location which is interpreted during the encryption process.

2. Editing the SQLNET.ora ile:
Add the ENCRYPTION_WALLET_LOCATION entry in the SQLNET.ora ile.
The SQLNET.ora ile can be found at $ORACLE_HOME\network\admin\
directory. Take a backup and register the net setting, as shown in the
following code snippet, for the encryption location. This step is required
only if a nondefault wallet directory has been created.

Using SecureFile LOBs

[218]

The DIRECTORY parameter value must be set as the wallet directory path
created in the step 1:

ENCRYPTION_WALLET_LOCATION=

(

 SOURCE=(METHOD=FILE)

 (

 METHOD_DATA= (DIRECTORY= <<Wallet location>>)

)

)

3. Reloading the Listener using the RELOAD command to adopt the
SQLNET changes:

C:\>LSNRCTL

LSNRCTL for 32-bit Windows: Version 11.2.0.1.0 - Production on 15-
JAN-2012 23:07:21

Copyright (c) 1991, 2010, Oracle. All rights reserved.

Welcome to LSNRCTL, type "help" for information.

LSNRCTL> RELOAD

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)
(KEY=EXTPROC1521)))

The command completed successfully

LSNRCTL>

4. Logging in as SYSDBA to set the encryption key and its password:

The ALTER SYSTEM command generates a new wallet at the wallet location.
This command will also open the wallet by default and make it ready for use:

/*Connect as sysdba*/

CONN sys/system as SYSDBA

Connected.

/*Alter the SYSTEM to set the encryption key*/

ALTER system SET ENCRYPTION KEY IDENTIFIED BY "mywallets"

/

System altered.

Chapter 7

[219]

Once the encryption key is set, the ewallet.p12 ile is generated in the
Wallets directory. It results into generation of a new master key which is
now the active master key. It resides within the wallet along with the earlier
inactive master keys:

One can explicitly open the wallet using the following command:

/*Alter the SYSTEM to open the encryption wallet*/

ALTER system SET ENCRYPTION WALLET OPEN IDENTIFIED BY "mywallets"

/

System altered.

The wallet directory location and current status can be queried from
V$ENCRYPTION_WALLET:

/*Connect as sysdba*/

Conn sys/system as sysdba

Connected.

/*Query the wallet information*/

SQL> SELECT *

 FROM v$encryption_wallet

/

WRL_TYPE WRL_PARAMETER STATUS

---------- ---

file C:\ExternalSecurity\Wallets OPEN

5. Altering the table to encrypt the SecureFile:

/*Connect to ORADEV user*/

Conn ORADEV/ORADEV

Connected

/*Alter the table to encrypt the IMAGE column*/

ALTER TABLE emp_lob_secfile

MODIFY

(

 image ENCRYPT USING 'AES192'

)

/

Table altered.

Using SecureFile LOBs

[220]

The encrypted columns can be veriied by querying the Oracle data diction-
ary view USER_ENCRYPTED_COLUMNS:

/*Query the table to verify the encrypted column details*/

SQL> SELECT column_name, encryption_alg, salt

FROM USER_ENCRYPTED_COLUMNS

WHERE table_name='EMP_LOB_SECFILE';

COLUMN_NAME ENCRYPTION_ALG SAL

------------------------------ ----------------------------- ---

IMAGE AES 192 bits key YES

The table carrying the encrypted column(columns) cannot participate in a
conventional export or import process. But the data pump rescues the situation
by supporting encrypted exports and imports.

Migration from BasicFiles to SecureFiles
The older LOBs are archived under the BasicFiles category. Note that they are not
extinct or obsolete, but are less effective after the induction of the SecureFiles feature.
A new system can adopt the SecureFiles as a new table or a new partition. What
about the older data which follows costly implementation and has no security? It
must inherit the new philosophy, so as to unify the system in terms of data security
and management. For this reason, several migration techniques have been jotted-out
to upgrade the BasicFile data to the SecureFile. We will briely discuss these methods:

•	 Online Redeinition method: It is one of the highly recommended methods
to move the BasicFile data. A table or a partition of a table can be redeined
to achieve the migration from the BasicFile to the SecureFile. It is a secure
and convenient method where the database remains up during the
complete process.

•	 Partition method: Usually, this method is preferred in low prioritized
environments where older LOB data can be axed for performance. The two
migration strategies under this method are as follows:

	° New SecureFile partition: A new partition with SecureFile
speciications can be added to a partitioned table so as to reap the
feature beneits in future. Older partitions can still hold the LOB data
as a BasicFile.

	° Create a new partitioned table: If the source table is a non
partitioned one, a new partitioned table can be created with two
partitions. The irst partition holds the older LOB data as a BasicFile
while the second partition holds the new LOB data as a SecureFile.

Within the scope of this chapter, we will discuss the Online Redeinition method.

Chapter 7

[221]

Online Redeinition method
The Online Redeinition method is a highly preferred method for the BasicFile to the
SecureFile migration. It employs the Oracle built-in package DBMS_REDEFINITION
to achieve the purpose. While the redeinition process is alive, the advanced
compression and security operations are carried out simultaneously during
the process. Let us illustrate a case where we will move the BasicFile LOB data
to SecureFiles.

During this process, we will create a new table with the desired coniguration
and speciication (SecureFile and its advanced options). On the completion of this
process, we can ind our original table which has been redeined in synchronization
with the new table. The table properties have been exchanged and the newly created
table can now be dropped or retained for the backup options.

Pre-requisites of the Online Redeinition method:

•	 The Online Redeinition process requires free space on the disk (at least
equal to the source table to be migrated).

•	 The original table (source) must have a primary key.

•	 The source and target tables must have the same structure.

•	 The target table should not have any indexes.

For demonstration, we will use a table READY_FOR_MIGRATION which stores a CLOB
column in the BasicFile orientation. The following code snippet shows the structure
and sample data in the table:

/*Table structure*/

SQL> DESC ready_for_migration

Name Null? Type

----------------- -------- ------------

ID NOT NULL NUMBER

DOC CLOB

/*Sample data*/

SQL> SELECT * FROM ready_for_migration;

 ID DOC

---------- -------------

 1 Oracle 9i

 2 Oracle 10g

 3 Oracle 11g

Using SecureFile LOBs

[222]

The steps to migrate the LOB columns of the table READY_FOR_MIGRATION to
SecureFiles are as follows:

1. Verifying the BasicFile nature of READY_FOR_MIGRATION:

/*Query the USER_LOBS view to check the status of LOB column*/

SELECT column_name, securefile

FROM user_lobs

WHERE table_name='READY_FOR_MIGRATION'

/

COLUMN_NAM SEC

---------- -----

DOC NO

2. Creating a table to support the migration activity:

Now, let us migrate its data into our SecureFiles table TARGET_FOR_MIGRA-
TION which has the same structure as the READY_FOR_MIGRATION table.
Verify the SecureFile feature from the dictionary view:

/*Table structure*/

CREATE TABLE target_for_migration

(id NUMBER,

 doc CLOB)

 LOB(doc) STORE AS SECUREFILE

 /

Table created.

/*Query the USER_LOBS view to check the status of LOB column*/

SQL> SELECT column_name, securefile

 FROM user_lobs

 WHERE table_name='TARGET_FOR_MIGRATION';

COLUMN_NAM SEC

---------- -----

DOC YES

3. Starting the redeinition process using the DBMS_REDEFINITION package:

/*Login as SYSDBA*/

Conn sys/system as SYSDBA

Connected.

/*Start the PL/SQL block*/

DECLARE

L_ERROR PLS_INTEGER := 0;

BEGIN

Chapter 7

[223]

/*Specify source and target tables for redefinition*/

 DBMS_REDEFINITION.START_REDEF_TABLE

 ('ORADEV', 'READY_FOR_MIGRATION', 'TARGET_FOR_MIGRATION',

 'id id,

 doc doc');

/*Specify source and target tables for copying the dependents*/

 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS

 ('ORADEV', 'READY_FOR_MIGRATION', 'TARGET_FOR_MIGRATION',1,
 true,true,true,false, L_ERROR);

 DBMS_OUTPUT.PUT_LINE('Errors := ' || TO_CHAR(L_ERROR));

/*Finish the redefinition process*/

 DBMS_REDEFINITION.FINISH_REDEF_TABLE

 ('ORADEV', 'READY_FOR_MIGRATION', 'TARGET_FOR_MIGRATION');

END;

/

PL/SQL procedure successfully completed.

Use DBMS_REDEFINITION.ABORT_REDEF_TABLE to abort the redeinition
process of a table, if you encounter ORA-23539: table "ORADEV"."READY_
FOR_MIGRATION" currently being redefined exception.

4. Verifying the SECUREFILE property for the READY_FOR_MIGRATION table:

/*Query the USER_LOBS view to check the status of LOB column*/

SQL> SELECT column_name, securefile

FROM USER_LOBS

WHERE TABLE_NAME='READY_FOR_MIGRATION'

/

COLUMN_NAME SEC

-------------------- ---

DOC YES

/*Verify the data*/

SQL> SELECT * FROM READY_FOR_MIGRATION;

 ID DOC

---------- -------------

 1 Oracle 9i

 2 Oracle 10g

 3 Oracle 11g

Now READY_FOR_MIGRATION has been migrated from the BasicFile to
the SecureFile storage. The TARGET_FOR_MIGRATION table inherits the
table properties from the original table during the redeinition. Its LOB
columns now follow BasicFile orientation. Now, check the LOB column
type in the table:

Using SecureFile LOBs

[224]

/*Query the USER_LOBS view to check the status of LOB column*/

SQL> SELECT column_name, securefile

FROM USER_LOBS

WHERE TABLE_NAME='TARGET_FOR_MIGRATION'

/

COLUMN_NAME SEC

-------------------- ---

DOC NO

The Online Redeinition method is a veriied and trusted method to migrate older
LOB data to SecureFiles. It does not hamper the work in progress as the redeinition
can be achieved while the table and database is online.

Summary
This chapter explained a new orientation of LOB handling in Oracle. It is introduced
in Oracle 11g R1 and known as SecureFile. The chapter explained the concept and
its architectural enhancements. We learned the working of SecureFiles and its
advanced features. We understood the enabling of the compression, deduplication,
and encryption features. Finally, we covered the migration of BasicFile LOBs to
SecureFile LOBs to reap the beneits of a sparking feature.

Since implementation of a ilesystem in the database is not limited with the
introduction of Oracle SecureFiles, further reading should be continued to
realize the strengths and application of SecureFiles. Implications of SecureFiles
can be observed in RAC environments, information lifecycle management,
database ilesystem (DBFS), and content management schemes. Further reading
can be continued from the following links:

•	 http://www.oracle.com/technology/products/database/oracle11g/

pdf/advanced-compression-whitepaper.pdf

•	 http://www.oracle.com/technology/obe/11gr1_db/datamgmt/

securefile/securefile.htm

•	 http://www.oracle.com/technology/products/database/securefiles/

index.html

In the next chapter, we will learn the compilation techniques in Oracle and multiple
performance tuning tips.

Chapter 7

[225]

Practice exercise
1. Which of the following are true statements about the SecureFiles?

a. It requires ASSM-enabled tablespace.

b. A BFILE type column in a table can be declared as SecureFiles.

c. A SecureFile is not affected by the LOB index contention.

d. SecureFiles use a new cache component of the buffer cache to
hold the LOB data.

2. Identify the incorrect statement about the compression feature in SecureFiles.

a. Compression might hit performance during the LOB write operation.

b. Compression of SecureFiles is a part of the advanced compression
feature in Oracle.

c. Possible degrees of compression can be MEDIUM and HIGH.

d. Oracle compresses all the LOB data at high priority, if the feature has
been enabled for a SecureFile.

3. The compression feature can be enabled only for encrypted SecureFiles.

a. True

b. False

4. A compressed table having a SecureFile column will automatically enable
compression for SecureFiles.

a. True

b. False

5. Identify the true statements about the deduplication feature of SecureFiles.

a. KEEP_DUPLICATES is the default option.

b. DEDUPLICATE retains one copy of the duplicate LOB data.

c. The deduplication feature hits the performance in write operations as the
server compares the secure hash code with the available hash codes
before writing to the disk.

d. Deduplication of iles is performed on the basis of the ilenames.

Using SecureFile LOBs

[226]

6. Pick the correct statement for the encryption feature in the SecureFile.

a. SecureFile encryption keys are stored within the table.

b. SecureFile encryption keys are stored within the database.

c. SecureFile encryption keys are stored outside the database.

d. Encryption algorithms cannot be modiied for an encrypted
SecureFile column.

7. Which of the following statements are true for the BasicFile to the SecureFile
migration in oracle?

a. BasicFile to the SecureFile migration can be done through data
pump operation.

b. Table redeinition is preferred as it does the migration with all the
resources connected online.

c. The DBMS_REDEFINITION package can migrate only one LOB column
at a time.

d. Unnecessary space consumption makes the redeinition process less
preferable over partition method.

Compiling and Tuning to

Improve Performance
The code compilation philosophy is one of the transparent activities in a
programming language which latently inluences a program's execution
performance. Oracle 11g has introduced the real native compilation to cope with
the bitter experiences of native and interpreted compilation techniques. Besides the
compiler enhancement, Oracle 11g has introduced a new optimization level which
brings terriic improvements in database performance by fueling up the optimizer's
intelligence. Furthermore, the intra unit inlining feature applies an optimization level
to assure logical gains in PL/SQL code performance by inlining local subprogram
invocations in program calls. In this chapter, we will learn the best practices and
recommendations to improvise upon the PL/SQL code performance. The topics
to be covered in this chapter are as follows:

•	 Compiler enhancements

	° Native and interpreted compilation—background

	° Real native compilation in PL/SQL

•	 Tuning PL/SQL code

•	 Intra unit inlining

•	 Effect of PLSQL_OPTIMIZE_LEVEL

•	 PRAGMA INLINE

Compiling and Tuning to Improve Performance

[228]

Native and interpreted compilation
techniques
In basic terms, a language compiler converts the program code (in high level
language) to a machine code (also known as M code or byte code), which can be
understood by the machine runtime engine. Once the database is installed and ready
for use, code compilation turns out to be a transparent activity to the users.

Until the release of Oracle9i, Oracle relied on an interpretable method of compilation
of its database program units. A compiler in interpreted mode converts a PL/SQL
 program into machine code, stores in the database, and interprets upon its
invocation. Oracle9i brought the revolutionary change in the compilation philosophy
by introducing native compilation. But a question popped up amongst the DBAs
and developers, "Is native compilation really more effective than an interpreted
compilation?" An interpreted mode of compilation was not supported by RAC
and backups.

It was the time when Oracle identiied code compilation technique as a potential
area of research and enhancement. Subsequently, Oracle 10g made underlying
changes in native compilation with the use of C compiler. Native compilation
now uses C compiler to convert the PL/SQL program into a C code, generates
sharable library (DLL), and places them in the database catalog. In Oracle 10g,
native compilation supports RAC environments. For database backups, the libraries
are required to be mounted in a ilesystem for the operating system utilities.
The ilesystem staging was being carried out with the help of the initialization
parameters, PLSQL_NATIVE_LIBRARY_DIR and PLSQL_NATIVE_LIBRARY_SUBDIR_
COUNT, which were set by the DBA. It was well-received but could not convincingly
respond to the loating question.

Both the compilation processes follow almost similar paths but the major difference
between the two is the code scanning. In the interpreted mode, the code scanning
process is carried out during runtime, while in native mode it is carried out at the
time of the compilation itself. This shifting of the code scanning process credits
to the runtime performance of a natively compiled program unit by some extent,
depending upon the code size and implementation. One cannot promise the
performance of a natively compiled code over interpreted in all cases.

Note that the PL/SQL compilation has employed the services of C compiler
to generate C code and link it to a sharable library module. Though the native
compilation has been technically accepted, the reliability and reluctance with the
C compiler (for which production databases have been reluctant to pay licenses)
on production servers has daunted the users. In addition, maintenance of multiple
compilation initialization parameters used to be a cumbersome job for DBAs.

Chapter 8

[229]

Oracle 11g has reformed the native compilation as real native compilation with
minimal settings.

Real native compilation
For the previously mentioned reasons, Oracle introduced real native compilation in
Oracle 11g. The real native compilation technique compiles the PL/SQL program
code directly into DLLs and stores the native machine code in the SYSTEM tablespace.
In this way, the step where libraries are to be mounted on a ilesystem has been
bypassed. Whenever the program is invoked for the irst time in a session, the
corresponding machine code is placed in the shared memory. Thereafter, it can be
readily invoked and used.

Let us examine the accomplishments of real native compilation:

•	 There is no dependency on C Compiler.

•	 Native byte code is stored in the SYSTEM tablespace.

•	 No sharable DLL is involved. So, no ilesystem is required for DLL.
•	 Coniguration works with a single parameter called PLSQL_CODE_TYPE

[native/interpreted].

•	 In the INTERPRETED mode, the PL/SQL code is compiled to the equivalent
byte code. At runtime, the PL/SQL interpreter engine executes them.

•	 In NATIVE mode, the PL/SQL code is compiled to the machine code. At
runtime, the machine code is executed natively by the database server.

•	 Better runtime performance, two times faster than C native compilation. The
interesting fact is that the selection of the compilation scheme depends upon
the database development phase.

•	 Real native is used for PL/SQL codes. A program with an SQL statement
might not yield the best performance but not the worst too.

•	 Real native compilation mode can be set at system level, session level,
and object level. A natively compiled program unit can call an interpreted
program and vice versa.

Compiling and Tuning to Improve Performance

[230]

Selecting the appropriate compilation mode
The appropriate selection of the compilation mode is a crucial activity of a DBA.
The question, "Native or interpreted?", hovers across the phases of the database
development cycle which has to be intelligently handled by the administrator.
The reason why this question pops up here is because of the demands at each
stage. During the development phase, the program units are frequently debugged,
compiled, and tested. Therefore, code compilation is expected to be fast. Program
units compile faster in interpreted mode because the partially compiled code is
interpreted at runtime. Similarly, during the post development stage, the program
units are compiled and tested and it is the time to pay off the efforts in the
development stage. Program unit execution is expected to be fast. Natively
compiled units execute faster than those compiled in interpreted mode. Thus,
native compilation mode is suitable for the post development stage.

Summarizing up this explanation, native mode aims to boost up the program
execution time and interpreted mode raises the code compilation performance.

Usually, the setting can be made in the design phase and modiied in the
development stages. The active development stage of the database and the
programmable logic are decisive for the selection of the exact compilation mode.
For this reason, the compilation modes share intercompatibility—program units
compiled in different compilation modes can exist together in a schema and invoke
each other, as required. Since the compilation modes affect the execution time, these
calls do not make any impact on the performance.

When to choose interpreted compilation mode?
The interpreted mode of compilation is preferred in the development stage of the
database cycle. It is the stage where the program units are recompiled frequently
to test various scenarios. Here, the strengths of a debugger are more desirable
than the execution speed of a program. There might be cases to debug the code
at optimization level 0 or 1, where native compilation is passive. The interpreted
compilation mode is faster than the native mode compilation. Execution performance
of a program can be raised through multiple code tuning techniques. In addition,
interpreted mode mostly suits the programs which accommodate multiple SQL
statements. The reason is accredited to the proportion of SQL to the interpretations.
More number of SQL need more time for interpretation. Since native compilation
does interpretation during runtime, it can adversely affect the performance.

Chapter 8

[231]

When to choose native compilation mode?
The native mode of compilation is preferred when a step is out of the development
stage where program compilation is quite rare. It is the stage when the user expects
the program execution to be fast. The optimization level and compilation mode are
expected to be ixed.

The native compilation mode is mainly for the PL/SQL program units which
have computational or transformational logic. A program having plenty of SQL
statements might reduce the performance in native mode because of the reason
stated in the previous topic. For program units which do not require context
switching across the SQL and PL/SQL engines, native compilation could make
handy differences in performance.

Setting the compilation mode
The compilation method can be set using the PLSQL_CODE_TYPE parameter. The
admissible values for the parameter are INTERPRETED and NATIVE. It can be set
using the ALTER SYSTEM or ALTER SESSION statement.

At the Database level, the change is applied to the entire database and it is permenant:

ALTER SYSTEM SET PLSQL_CODE_TYPE = [NATIVE | INTERPRETED]

At the Session level, the change is applied to the database only for the current session:

ALTER SESSION SET PLSQL_CODE_TYPE = [NATIVE | INTERPRETED]

The DBA sets the compilation method to be followed in the database by setting the
PLSQL_CODE_TYPE initialization parameter:

/*Connect as sysdba*/

Conn sys/system as SYSDBA

Connected.

/*Set the PLSQL_CODE_TYPE*/

ALTER SYSTEM SET PLSQL_CODE_TYPE = NATIVE

/

System altered.

Whenever the compilation method for the database or session is altered, the
programs retain their compilation state until they are recompiled so as to inherit the
latest compilation mode. Once they are recompiled, they adopt the current session
compilation method.

Compiling and Tuning to Improve Performance

[232]

Querying the compilation settings
Compilation settings can be queried from the data dictionary view [USER | DBA
| ALL]_PLSQL_OBJECT_SETTINGS. The dictionary view contains the compilation
settings by subprogram. The details include the subprogram TYPE, NAME, PLSQL_
CODE_TYPE, and other object level initialization parameters. These parameters are
shown in the following code snippet:

/*Connect as ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Show structure of USER_PLSQL_OBJECT_SETTINGS*/

SQL> desc USER_PLSQL_OBJECT_SETTINGS

 Name Null? Type

 --- -------- ----------------

 NAME NOT NULL VARCHAR2(30)

 TYPE VARCHAR2(12)

 PLSQL_OPTIMIZE_LEVEL NUMBER

 PLSQL_CODE_TYPE VARCHAR2(4000)

 PLSQL_DEBUG VARCHAR2(4000)

 PLSQL_WARNINGS VARCHAR2(4000)

 NLS_LENGTH_SEMANTICS VARCHAR2(4000)

 PLSQL_CCFLAGS VARCHAR2(4000)

 PLSCOPE_SETTINGS VARCHAR2(4000)

Let us now query the PLSQL_CODE_TYPE and PLSQL_OPTIMIZE_LEVEL values for the
subprograms owned by the ORADEV user:

/*Query the compilation settings for ORADEV schema objects*/

SELECT name, type, plsql_code_type, plsql_optimize_level OPTIMIZE

FROM USER_PLSQL_OBJECT_SETTINGS

WHERE type in ('PROCEDURE', 'FUNCTION','PACKAGE','PACKAGE BODY')

/

NAME TYPE PLSQL_CODE OPTIMIZE

-------------------- ------------ ---------- ------------

P_TO_UPPER PROCEDURE NATIVE 2

P_SET_CONTEXT PROCEDURE NATIVE 2

P_EMP_LOCATION PROCEDURE NATIVE 2

PKG_CONTEXTS PACKAGE BODY NATIVE 2

PKG_CONTEXTS PACKAGE NATIVE 2

PKG_COMPUTEJAVACLASS PACKAGE BODY NATIVE 2

PKG_COMPUTEJAVACLASS PACKAGE NATIVE 2

F_LOWER FUNCTION NATIVE 2

F_GET_SUM FUNCTION NATIVE 2

Chapter 8

[233]

F_GET_DOUBLE FUNCTION NATIVE 2

F_GET_DEPT_PREDICATE FUNCTION NATIVE 2

F_CONVERT_CASE FUNCTION NATIVE 2

F_COMPUTE_SUM FUNCTION NATIVE 2

F_CASE_CONVERT FUNCTION NATIVE 2

F_ADD FUNCTION NATIVE 2

ADD_JOB_HISTORY PROCEDURE NATIVE 1

17 rows selected.

Compiling a program unit for a native or
interpreted compilation
In this section, we will illustrate how a program adopts the compilation mode at the
object level which is different from the current session compilation mode. The steps
are as follows:

1. Querying the current compilation mode of the session:

/*Connect as sysdba*/

Conn sys/system as sysdba

Connected.

/*Display current setting of parameter PLSQL_CODE_TYPE*/

SHOW PARAMETER PLSQL_CODE_TYPE

NAME TYPE VALUE

------------------------------------ ----------- -----

plsql_code_type string INTERPRETED

2. Creating a sample function:

The function is compiled as per the session's compilation scheme:

/*Connect as ORADEV user*/

SQL> CONN ORADEV/ORADEV

Connected.

/*Create a function*/

SQL> CREATE OR REPLACE FUNCTION F_COMP_INT

 RETURN NUMBER

 IS

 BEGIN

 RETURN 1;

 END;

/

Function created.

Compiling and Tuning to Improve Performance

[234]

3. Verifying the compilation mode used for the F_COMP_INT function:

Yes, it is found correct as INTERPRETED:

/*Query the compilation settings for the function F_COMP_INT*/

SELECT name, type, plsql_code_type, plsql_optimize_level OPTIMIZE

FROM USER_PLSQL_OBJECT_SETTINGS

WHERE name = 'F_COMP_INT'

/

NAME TYPE PLSQL_CODE_TYPE OPTIMIZE

---------- ------------ --------------- ----------

F_COMP_INT FUNCTION INTERPRETED 2

4. Recompiling the function and specifying the compilation mode:

/*Connect as ORADEV*/

Conn ORADEV/ORADEV

Connected.

/*Explicitly compile the function*/

alter function f_comp_int compile plsql_code_type = NATIVE;

Function altered.

5. Querying the compilation settings of the F_COMP_INT function:

Note that it has been compiled in native mode:

/*Query the current compilation settings for the function F_COMP_
INT*/

SELECT name, type, plsql_code_type, plsql_optimize_level OPTIMIZE

FROM USER_PLSQL_OBJECT_SETTINGS

WHERE name = 'F_COMP_INT'

/

NAME TYPE PLSQL_CODE_TYPE OPTIMIZE

---------- ------------ --------------- ------------

F_COMP_INT FUNCTION NATIVE 2

Another way of modifying the compilation mode settings can be demonstrated by
altering the session settings. Whenever a program unit is compiled, the preferred
compilation settings go in the sequence of object, session, and then the database:

/*Connect as ORADEV user*/

SQL> conn ORADEV/ORADEV

Connected.

/*Alter the session to set compilation mode as NATIVE*/

SQL> ALTER SESSION SET PLSQL_CODE_TYPE='NATIVE'

/

Chapter 8

[235]

Session altered.

/*Compile the procedure so as to inherit the current session
settings*/

SQL> ALTER FUNCTION F_COMP_INT COMPILE

/

Procedure altered.

/*Query the compilation settings for the function F_COMP_INT*/

SELECT name, type, plsql_code_type, plsql_optimize_level OPTIMIZE

FROM USER_PLSQL_OBJECT_SETTINGS

WHERE

name = 'F_COMP_INT'

/

NAME TYPE PLSQL_CODE_TYPE OPTIMIZE

---------- ------------ --------------- ------------

F_COMP_INT FUNCTION NATIVE 2

Compiling the database for PL/SQL native
compilation (NCOMP)
During database upgrades from lower versions to Oracle 11g, all the program units
were required to be recompiled in native compilation (NCOMP) mode. Oracle
provides a script called dbmsupgnv.sql to accomplish the task of compiling all
program units in native compilation mode. Note that in case of database version
upgrades, the upgraded scripts must be executed prior to dbmsupgnv.sql.

Here we will demonstrate the native recompilation of all program units. The steps of
this process are as follows:

1. Shutting down the database:

Ensure that all connections to the server are terminated and no new connec-
tions are established until the upgrade process is completed:

/*Connect as SYSDBA*/

SQL> conn sys/system as sysdba

Connected.

/*Shutdown*/

SQL> shutdown immediate

Database closed.

Database dismounted.

ORACLE instance shut down.

Compiling and Tuning to Improve Performance

[236]

2. Setting PLSQL_CODE_TYPE as NATIVE for subsequent compilations:

plsql_code_type=native

This step is required to set the compilation scheme for the subsequent pro-
gram units (after upgrade). It is not part of the database native recompila-
tion process. Since, these days, most of the databases work with spfile.
ora instead of init.ora, the setting of PLSQL_CODE_TYPE as NATIVE can also
be done after the upgrade process is completed and the database is started
normally. It can be done using the ALTER SYSTEM statement:

/*Alter the system to set the new compilation mode*/

SQL> ALTER SYSTEM SET PLSQL_CODE_TYPE=NATIVE SCOPE=SPFILE

/

System altered.

In addition, ensure that another initialization parameter called PLSQL_OPTI-
MIZE_LEVEL is set as 2 or higher. PLSQL_OPTIMIZE_LEVEL is an initialization
parameter which enforces a level of optimization (out of an available four
levels) to the PL/SQL optimizer and thus, manoeuvres the working proile of
the compiler. This parameter was introduced in Oracle 10g and saw a major
enhancement in Oracle 11g. We will discuss it later in this chapter.

3. Starting the database in the UPGRADE mode:

/*Startup in upgrade mode*/

SQL> startup upgrade

ORACLE instance started.

Total System Global Area 535662592 bytes

Fixed Size 1375792 bytes

Variable Size 327156176 bytes

Database Buffers 201326592 bytes

Redo Buffers 5804032 bytes

Database mounted.

Database opened.

Alternatively, the database can be started and mounted normally. Then, it
can be opened in the UPGRADE mode as follows:

/*Open database in upgrade mode*/

ALTER DATABASE OPEN UPGRADE;

Chapter 8

[237]

4. Executing the dbmsupgnv.sql script to recompile all the program units in
Native mode:

/*Execute the recompilation script*/

SQL> @ORACLE_HOME\rdbms\admin\dbmsupgnv.sql

The script creates the native compilation package sys.dbmsncdb which
provides two subprograms to perform interpreted or native compilation, as
required. The SETUP_FOR_NATIVE_COMPILE suprogram sets the database for
native compilation, while SETUP_FOR_INTERPRETED_COMPILE sets the data-
base for interpreted compilation.

Furthermore, the script invalidates all PL/SQL procedures, functions, type
bodies, triggers, and type body objects in the database and sets their settings
to native.

5. Shutting down and restarting the database:

/*Shutdown and startup the database normally*/

SQL> shutdown immediate

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> startup

ORACLE instance started.

Total System Global Area 535662592 bytes

Fixed Size 1375792 bytes

Variable Size 327156176 byteDatabase Buffers
201326592 bytes

Redo Buffers 5804032 bytes

Database mounted.

Database opened.

6. Executing the utlrp.sql script to recompile invalid objects:

Before running the utlrp.sql script to recompile the invalid program units,
make sure that no new connections are established with the servers. Cau-
tiously, the session must be a restricted to single connection:

SQL> @ORACLE_HOME\rdbms\admin\utlrp.sql

The recompilation of the invalidated program units may take a longer time to
complete, depending on the schema size. For large databases, the script execution
may leave the system on hang for several hours to natively recompile all the program
units. The invalidated objects can be queried from the USER_OBJECTS dictionary
view. Ideally, the script should recompile all the invalidated program units, but if
some objects are left out from the process, the utlrp.sql script can be rerun (until
all the schema objects get validated).

Compiling and Tuning to Improve Performance

[238]

The native compilation of all the program units can be veriied using the SELECT
query. In an ideal case, the query should show only the NATIVE value:

/*Select object count for each PLSQL_CODE_TYPE*/

SELECT plsql_code_type, count(*)

FROM user_plsql_object_settings

GROUP BY plsql_code_type

/

If the system requires moving back to the interpreted compilation scheme, the
same steps must be followed, but the dbmsupgnv.sql script has to be replaced
with dbmsupgin.sql.

Tuning PL/SQL code
Once the DBA conigures the database for optimal performance, the code
development plays an essential role in PL/SQL performance. Now, we will discuss
certain areas of improvements. These improvements can be made during the
development stage so as to avoid the nightmares later.

The tunable areas identiied and covered in this section are as follows:

•	 Avoiding implicit typecasting: Identiication of appropriate data type
•	 Modularizing the programs: Modular programming and effective code

sampling shares the work load

•	 Usage of bulk bind collections and the FORALL function : Usage of the
FORALL function and bulk bind collections optimize the bulk operations

•	 Optimized conditional statements: Conditional statements can be optimized
by logically placing the conditions

Besides the above areas, there are several other areas where tuning can bring
comprehensive changes in performance. There is an immense scope for tuning
in the code which uses dynamic SQL, SQL queries in PL/SQL blocks, functions
callable from SQL statements, and so on. However, from a certiication preparation
perspective, we will discuss the listed target areas which focus on improved code
writing to improvise upon the code performance.

Chapter 8

[239]

Comparing SQL and PL/SQL
We are well versed with the facts that SQL is a concrete trivial database interactive
language, while PL/SQL is the procedural extension of SQL. Often, we debate on
SQL in PL/SQL in terms of performance and embedding strategies. Here, we need
to understand the speciic strengths of each one of them. SQL is the best recognized
language to interact with the database and perform data activities. Its procedural
extension gives additional lexibility to deal with most of the real world problems in
PL/SQL as a language. The SQL statements use the SQL engine for execution while
PL/SQL hits the PL/SQL engine. When a SQL statement is encountered in a PL/
SQL program, the context is switched from the PL/SQL engine to SQL engine. The
context switching contributes to the performance degradation during the program
executions. This implies that a greater number of SQL statements in a PL/SQL
program can become hazardous for an application.

But, nevertheless, certain situations cannot be realized without the eficiencies of
SQL. In such cases, SQL statements can be included in the PL/SQL program. In this
regards, there are certain recommendations which are as follows:

•	 Avoid embedding of a SQL statement within iterative control structures
in PL/SQL such as loops. A single SQL statement might work better in
such cases.

•	 Transactions can be made through an API layer. An API or subroutine can
be deined to handle transactions. SQL statements in an executable section
can be procedurally enhanced as standalone procedures or a packaged
subprogram.

Avoiding implicit data type conversion
The PL/SQL runtime engine can perform an implicit type conversion of values. For
example, a numeric value can be assigned to a string variable but not vice versa.
Similarly, a date value can be assigned to a string variable but not vice versa. This
conversion depends on the compatibility matrix:

BINARY_FLOAT BINARY_DOUBLE PLS_INTEGER CHAR NCHAR VARNCHAR2

NUMBER

BINARY_INTEGER

BINARY_FLOAT

BINARY_DOUBLE

PLS_INTEGER

CHAR

NCHAR

VARCHAR2

NVARCHAR2

DATE

CLOB

NCLOB

Number BINARY_INTEGER NVARNCHAR2 DATE CLOB NCLOB

Compiling and Tuning to Improve Performance

[240]

In the previous section, we learned that the Oracle server takes care of implicit type
casting. The casting process adds up to its work load at the cost of performance.
For this reason, a variable must belong to an appropriate data type to correctly
accommodate the value which is assigned to it. Oracle also provides type cast
built-in functions which can be used to help the optimizer to hint the type casting.
Oracle provides TO_CHAR, TO_NUMBER, and TO_DATE to explicitly mark the conversion
of a value.

Let us conduct a small illustration to check the effect of implicit type casting on the
code's performance. The PL/SQL block, as shown in the following code snippet,
declares a string variable and assigns a numeric value to it in a loop. Here, the Oracle
server has to implicitly work upon the type conversion of the numeric value assigned
to the string variable. The PLSQL_OPTIMIZE_LEVEL has been set to 1 to capture the
precise results:

/*Set the PLSQL_OPTIMIZE_LEVEL to 1*/

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 1

/

Session altered.

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_STR VARCHAR2(10);

 L_COUNT NUMBER :=0;

BEGIN

/*Capture the system time before loop*/

 L_COUNT := DBMS_UTILITY.GET_TIME;

 /*Start a loop which assigns fixed numeric value to a local string
variable*/

 FOR I IN 1..1000000

 LOOP

 L_STR := 1;

 END LOOP;

/*Print the time consumed in the operations*/

 DBMS_OUTPUT.PUT_LINE('Time Consumed:'||TO_CHAR(DBMS_UTILITY.GET_TIME
- L_COUNT));

END;

/

Time Consumed:17

PL/SQL procedure successfully completed.

Chapter 8

[241]

Now, we will assign a string value to the string variable. Oracle has no extra activity
except to assign the correct value type to the variable:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_STR VARCHAR2(10);

 L_COUNT NUMBER :=0;

BEGIN

/*Capture the system time before loop*/

 L_COUNT := DBMS_UTILITY.GET_TIME;

 /*Start a loop which assigns fixed string value to a local string
variable*/

 FOR I IN 1..1000000

 LOOP

 L_STR := 'A';

 END LOOP;

/*Print the time consumed in the operations*/

 DBMS_OUTPUT.PUT_LINE('Time Consumed:'||TO_CHAR(DBMS_UTILITY.GET_TIME
- L_COUNT));

END;

/

Time Consumed:6

PL/SQL procedure successfully completed.

Understanding the NOT NULL constraint
We often declare the NOT NULL variables in our program units to shield them against
the NULL values in the program. Unknowingly, we pressurize the Oracle server
to perform the additional NOT NULL test before each assignment of the particular
variable. The overhead signiicantly affects the performance.

For testing a variable for nullity, Oracle follows a peculiar approach. The server
assigns the result of an assignment statement to a temporary variable and checks
this temporary variable for nullity. If it returns the true value, exception occurs
and block terminates, otherwise the program control proceeds further. Therefore,
a variable should never be declared with the NOT NULL constraint. Instead, it can be
explicitly checked for nullity in the executable section whenever required. Let us
check out how it is done.

Compiling and Tuning to Improve Performance

[242]

You write a utility program in your application to add two numbers. You capture the
sum of two numbers in a NOT NULL variable. Ensure that PLSQL_OPTIMIZE_LEVEL is
set as 1 to yield clear results:

/*Set PLSQL_OPTIMIZE_LEVEL as 1*/

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL=1

/

Session altered.

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_NUM NUMBER NOT NULL := 0;

 L_A NUMBER := 10;

 L_COUNT NUMBER;

BEGIN

/*Capture the start time*/

 L_COUNT := DBMS_UTILITY.GET_TIME;

/*Start the loop*/

 FOR I IN 1..1000000

 LOOP

 L_NUM := L_A + I;

 END LOOP;

/*Compute the time difference and display*/

 DBMS_OUTPUT.PUT_LINE('Time Consumed:'||TO_CHAR(DBMS_UTILITY.GET_TIME
-
 L_COUNT));

END;

/

Time Consumed:17

PL/SQL procedure successfully completed.

Alternatively, Oracle recommends the explicit handling of NOT NULL as follows:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_NUM NUMBER;

 L_A NUMBER := 10;

 L_COUNT NUMBER;

BEGIN

/*Capture the start time*/

 L_COUNT := DBMS_UTILITY.GET_TIME;

/*Start the loop*/

 FOR I IN 1..1000000

Chapter 8

[243]

 LOOP

 L_NUM := L_A + I;

 IF L_NUM IS NULL THEN

 DBMS_OUTPUT.PUT_LINE('Result cannot be NULL');

 EXIT;

 END IF;

 END LOOP;

/*Compute the time difference and display*/

 DBMS_OUTPUT.PUT_LINE('Time Consumed:'||TO_CHAR(DBMS_UTILITY.GET_TIME
-
 L_COUNT));

END;

/

Time Consumed:12

PL/SQL procedure successfully completed.

Note that the time consumed in the second case is 30 percent less than the latter. The
difference in the block execution timings illustrates the loss in performance due to
the NOT NULL constraint. Similar observations can be made with the NOT NULL subtype
of NUMBER that is, NATURALN (NOT NULL NATURAL), POSITIVEN (NOT NULL POSITIVE),
and SIMPLE_INTEGER (NOT NULL PLS_INTEGER).

Using the PLS_INTEGER data type for
arithmetic operations
The PLS_INTEGER data type, which hails from the number family, was introduced in
Oracle 7 to speed up the intensive mathematical operations. It is the only data type
which uses native machine arithmetic instead of the C arithmetic library. This makes
it faster in arithmetic operations in program units. The 32 bit data type can store
values in the range of -2147483648 to 2147483647.

Let us now undertake a case study where we will observe the difference in
performance of arithmetic operations using NUMBER and PLS_INTEGER as the data type.

The following PL/SQL block performs addition in iteration:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_NUM NUMBER := 0;

 L_ST_TIME NUMBER;

 L_END_TIME NUMBER;

BEGIN

Compiling and Tuning to Improve Performance

[244]

/*Capture the start time*/

 L_ST_TIME := DBMS_UTILITY.GET_TIME();

/*Begin the loop to perform a mathematical calculation*/

 FOR I IN 1..100000000

 LOOP

/*The mathematical operation increments a variable by one*/

 L_NUM := L_NUM+1;

 END LOOP;

 L_END_TIME := DBMS_UTILITY.GET_TIME();

/*Display the time consumed*/

 DBMS_OUTPUT.PUT_LINE('Time taken by NUMBER:'||TO_CHAR(L_END_TIME -
L_ST_TIME));

END;

/

Time taken by NUMBER:643

PL/SQL procedure successfully completed.

The mathematical operation with the NUMBER data type consumes 643 ms. Now let us
replace the NUMBER data type with the PLS_INTEGER data type:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_PLS PLS_INTEGER := 0;

 L_ST_TIME NUMBER;

 L_END_TIME NUMBER;

BEGIN

/*Capture the start time*/

 L_ST_TIME := DBMS_UTILITY.GET_TIME();

/*Begin the loop to perform a mathematical calculation*/

 FOR I IN 1..100000000

 LOOP

/*The mathematical operation increments a variable by one*/

 L_PLS := L_PLS+1;

 END LOOP;

/*Display the time consumed*/

 L_END_TIME := DBMS_UTILITY.GET_TIME();

 DBMS_OUTPUT.PUT_LINE('Time taken by PLS_INTEGER:'||TO_CHAR(L_END_
TIME -
 L_ST_TIME));

END;

/

Time taken by PLS_INTEGER:196

PL/SQL procedure successfully completed.

Chapter 8

[245]

Note the execution time of the above block. It is almost one third of the execution
carried out with the NUMBER data type. The demonstration makes it clear that the
PLS_INTEGER data type rules the mathematical operations in PL/SQL.

Using a SIMPLE_INTEGER data type
Oracle 11g brings in the SIMPLE_INTEGER data type—a subtype of PLS_INTEGER
which is of great use in applications and in the PL/SQL programming. We know
it well that the range of the PLS_INTEGER data type is -2147483648 to 2147483647.
Beyond its range, the PLS_INTEGER data type would raise the ORA-01426: numeric
overflow exception.

The SIMPLE_INTEGER data type leaps a step forward to deal with the numeric
overlow scenarios of PLS_INTEGER. The range is the same as that in PLS_INTEGER
that is, -2147483648 to 2147483647. It restricts the NULL values and avoids
overlow semantics.

Since no overlow check is done for the SIMPLE_INTEGER data
type, it might work faster than the PLS_INTEGER data type.

A small case study would justify the use of SIMPLE_INTEGER in PL/SQL programs.
The following PL/SQL block declares a PLS_INTEGER variable and increments it by
one. The numeric overlow exception is raised upon the second increment:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a variable of PLS_INTEGER type and initialize it with a
value nearing to its range*/

 l_pls PLS_INTEGER:= 2147483646;

BEGIN

/*Increment the variable by 1*/

 l_pls := l_pls +1;

 DBMS_OUTPUT.PUT_LINE('After 1st increment:'|| l_pls);

/*Re-increment the variable by 1*/

 l_pls := l_pls +1;

 DBMS_OUTPUT.PUT_LINE('After 2nd increment:'|| l_pls);

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('Numeric Overflow exception occurred');

END;

/

Compiling and Tuning to Improve Performance

[246]

After 1st increment:2147483647

Numeric Overflow exception occurred

PL/SQL procedure successfully completed.

Now, replace the data type in the preceding block with the SIMPLE_INTEGER data
type and observe the output:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 l_simple SIMPLE_INTEGER:= 2147483646;

BEGIN

/*Increment the variable by 1*/

 l_simple:= l_simple +1;

 DBMS_OUTPUT.PUT_LINE('After 1st increment:'|| l_simple);

/*Re-Increment the variable by 1*/

 l_simple:= l_simple +1;

 DBMS_OUTPUT.PUT_LINE('After 2nd increment:'|| l_simple);

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('Numeric Overflow exception occurred');

END;

/

After 1st increment:2147483647

After 2nd increment:-2147483648

PL/SQL procedure successfully completed.

SIMPLE_INTEGER is a NOT NULL data type. A variable of
the SIMPLE_INTEGER data type must be initialized with a
deinite value at the time of declaration.

Modularizing the PL/SQL code
Modular programming is a way of designing and programming the development.
It reduces the code redundancy by getting the executable sections cut-short, and
promotes module reusability as they can be invoked from other PL/SQL blocks.
The module can be a local subprogram in a PL/SQL block or a stored subprogram.
It can be a packaged subprogram which can be used as many times as required in a
database session.

Chapter 8

[247]

Check the following example. The PL/SQL block fetches the details of all employees
and displays the employees' names along with their working location. For location,
a cursor has been declared which would query the DEPARTMENTS table for the input
department number:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a cursor to select employee name and department*/

CURSOR c_emp IS

 SELECT ename, deptno

 FROM employees;

/*Declare a cursor to get the location of the department*/

CURSOR c_dept(p_dept NUMBER) IS

 SELECT loc

 FROM departments

 WHERE deptno = p_dept;

l_loc VARCHAR2(100);

BEGIN

/*Open cursor FOR loop*/

 FOR I IN c_emp

 LOOP

 OPEN c_dept(I.deptno);

 FETCH c_dept into l_loc;

 CLOSE c_dept;

/*Print the employee name and its location*/

 DBMS_OUTPUT.PUT_LINE ('Employee '||I.ename||' works in '||l_loc);

 END LOOP;

END;

/

The above programming involves much of code writing and also the code
redundancy of getting through the cursor execution cycle. Let us see how
we can modularize it to shorten the executable section of the block:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

CURSOR c_emp IS

 SELECT ename, deptno

 FROM employees;

/*Local function to get the department*/

FUNCTION F_GET_LOC (P_DEPTNO VARCHAR2)

Compiling and Tuning to Improve Performance

[248]

RETURN VARCHAR2

IS

l_loc VARCHAR2(100);

BEGIN

 SELECT loc INTO l_loc

 FROM departments

 WHERE deptno = p_deptno;

 RETURN l_loc;

END F_GET_LOC;

BEGIN

/*Open the cursor FOR loop*/

 FOR I IN c_emp

 LOOP

/*Print the employee name and its location*/

 DBMS_OUTPUT.PUT_LINE ('Employee '||I.ename||' works in
 '||F_GET_LOC(I.deptno));

 END LOOP;

END;

/

The preceding block creates a local function which returns the location of the
given employee.

Deinition of the local subprograms must appear at the end in the
declarative section. However, they can be prototyped along with
other local variables. The concept of prototyping subprograms

before their deinition is known as forward declaration.

Using bulk binding
The bulk bind, as the name suggests, binds the multirecord data in a bulk. It is one of
the most promising and eficient methods to reduce context switching between SQL
and PL/SQL runtime engines. But, of course, the proit does not come without any
investments. The load on the disk or the CPU usage increases with bulk operations.

Bulk bind can be implemented in two ways—BULK COLLECT and FORALL.

BULK COLLECT is used in the PL/SQL-embedded SELECT INTO statements to pull out
a multirecord result set from the database in one single shot. Therefore, no cursors,
no FOR loop construct, and no context switching is required except for the irst
time. It improves the code performance comprehensively by reducing the context
switching and implementing data fetch as collections.

Chapter 8

[249]

The usage goes as per the following syntax:

BEGIN

 SELECT <list of column(s)>

 BULK COLLECT INTO <collection variable to hold the data>

 FROM <table name>

 <WHERE conditions>

 <FOR UPDATE [NOWAIT | SKIP LOCKED]>

END;

BULK COLLECT can be used in:

•	 The SELECT INTO clause with the SELECT statement

•	 The RETURNING INTO clause with the UPDATE statement

•	 The FETCH INTO clause with an explicit cursor

Prior to Oracle9i, BULK COLLECT could only be used with the
static SQL statements but now it can be used with the dynamic
SQL statements too.

FORALL is the bulk loop construct which is used to perform bulk transactions
on a table. The most beneicial feature is that the loop would not exit abruptly if
any single transaction out of the whole bulk fails. Instead, it stores all the raised
exceptions in a bulk exception logger—BULK_EXCEPTIONS. The bulk exceptions
can be taken-up and resolved separately under the EXCEPTION section. The only
shortcoming is that only a single DML statement can be processed under the FORALL
loop. Syntactically, the FORALL usage is as follows:

FORALL index IN

[

 lower_bound ... upper_bound |

 INDICES OF indexing_collection |

 VALUES OF indexing_collection

]

[SAVE EXCEPTIONS]

[DML statement]

In the preceding syntax, the DML statement can be INSERT, UPDAE, DELETE, or MERGE.

Oracle 11g introduced support for MERGE with FORALL.

Compiling and Tuning to Improve Performance

[250]

The following PL/SQL code uses BULK COLLECT to fetch the complete employee
details (ID, name, department number, and salary):

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Display the EMPLOYEES table structure*/

SQL> DESC EMPLOYEES

 Name Null? Type

 ----------------- -------- ------------

 EMPNO NOT NULL NUMBER(4)

 ENAME NOT NULL VARCHAR2(10)

 JOB VARCHAR2(9)

 MGR NUMBER(4)

 HIREDATE DATE

 SAL NUMBER(7,2)

 COMM NUMBER(7,2)

 DEPTNO NUMBER(2)

/*Start the PL/SQL block*/

DECLARE

/*Declare a record to include the required attributes */

 TYPE REC_EMP IS RECORD

 (

 EMPID EMPLOYEES.EMPNO%TYPE,

 ENAME EMPLOYEES.ENAME%TYPE,

 DEPT EMPLOYEES.DEPTNO%TYPE,

 SALARY EMPLOYEES.SAL%TYPE

);

 TYPE T_EMP IS TABLE OF REC_EMP;

 L_EMP T_EMP;

BEGIN

/*FETCH cycle helps the reduce contact context switches*/

 SELECT empno, ename, deptno, sal

 BULK COLLECT INTO L_EMP

 FROM employees;

END;

/

PL/SQL procedure successfully completed.

Few facts on BULK COLLECT:

BULK COLLECT does not require the initialization of
collection variables.

The BULK COLLECT operation never raises the NO_DATA_FOUND
exception. If no data is returned by the query, the collection
variable contains no elements.

Chapter 8

[251]

We will demonstrate the usage of FORALL in the following program only. We will try
to update the salaries of all the employees and display the new salaries. Check it out
in the following program:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a local record and a table of record to capture the values*/

 TYPE REC_EMP IS RECORD

 (

 EMPID EMPLOYEES.EMPNO%TYPE,

 ENAME EMPLOYEES.ENAME%TYPE,

 DEPT EMPLOYEES.DEPTNO%TYPE,

 SALARY EMPLOYEES.SAL%TYPE

);

 TYPE T_EMP IS TABLE OF REC_EMP;

 L_EMP T_EMP := T_EMP();

 TYPE REC_EMP_UPD IS RECORD

 (

 ENAME EMPLOYEES.ENAME%TYPE,

 SAL EMPLOYEES.SAL%TYPE

);

 TYPE T_EMP_UPD IS TABLE OF REC_EMP_UPD;

 L_EMP_UPD T_EMP_UPD;

BEGIN

/*Fetch the employee details in a local collection*/

 SELECT empno, ename, deptno, sal

 BULK COLLECT INTO L_EMP

 FROM employees;

/*Use FORALL to update the salary values. Note the use of RETURNING
INTO*/

 FORALL I IN L_EMP.FIRST..L_EMP.LAST

 UPDATE employees

 SET sal = L_EMP(I).SALARY + 1000

 WHERE empno = L_EMP(I).EMPID

 RETURNING ENAME, SAL BULK COLLECT INTO L_EMP_UPD;

/*Display the current data*/

 FOR I IN 1..L_EMP_UPD.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE('New salary of '||L_EMP_UPD(I).ENAME||' is
 '||L_EMP_UPD(I).SAL);

 END LOOP;

END;

/

Compiling and Tuning to Improve Performance

[252]

New salary of SMITH is 9800

New salary of ALLEN is 2600

New salary of WARD is 2250

New salary of JONES is 3975

New salary of MARTIN is 2250

New salary of BLAKE is 3850

New salary of CLARK is 3450

New salary of SCOTT is 4000

New salary of KING is 6000

New salary of TURNER is 2500

New salary of ADAMS is 2100

New salary of JAMES is 1950

New salary of FORD is 4000

New salary of MILLER is 2300

PL/SQL procedure successfully completed.

Using SAVE_EXCEPTIONS
Suppose you are asked to write a program to read 10,000 records from a legacy
system and insert it into the database table. You fetch the records in a cursor, iterate
the result set in the FOR loops, and insert the records one by one. If a data type
mismatch occurs in the 2482nd record, exception occurs, control skips the rest of the
loop, and the performed transaction is rolled back.

For such scenarios, Oracle provides the SAVE_EXCEPTIONS clause which is used with
FORALL to restore the exceptions which are raised during the FORALL execution. The
ongoing transactions are not affected by the exceptions raised. The defected records
are skipped and are logged under the SQL%BULK_EXCEPTIONS pseudo column. If out
of 5000 records, 13 records are defected, 4987 records are still inserted while 13 are
logged in the SQL%BULK_EXCEPTIONS array structure with the cursor index.

The %BULK_EXCEPTIONS attribute maintains two ields—ERROR_INDEX and ERROR_
CODE. ERROR_INDEX stores the defect record index where the exception was raised
while ERROR_CODE records the exception message. %BULK_EXCEPTIONS.COUNT stores
the count of exceptions raised during execution of the FORALL statement. Notice that
the standard error code captured by the ERROR_CODE attribute is not preixed with
the hyphen (-) sign. Therefore, to fetch its equivalent error message, pass error code
preixed with a hyphen (-) sign to the SQLERRM function.

Chapter 8

[253]

In the EMPLOYEES table, EMPNO is the primary key and NAME cannot be NULL. The
following PL/SQL code declares the PL/SQL table which has a mix of ixed and
NULL values. We shall try to update employee names with NULL through a program
and store the defective records using SAVE_EXCEPTIONS:

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*A local PL/SQL table holds the list of new names*/

 TYPE T_EMP IS TABLE OF VARCHAR2(100) ;

 L_EMP T_EMP := T_EMP('Smith','Adams',null,'King',null,'George');

 BULK_ERRORS EXCEPTION;

 PRAGMA EXCEPTION_INIT (BULK_ERRORS, -24381);

BEGIN

/*FORALL to update the employee names*/

FORALL I IN 1..L_EMP.COUNT

SAVE EXCEPTIONS

UPDATE EMPLOYEES

SET ENAME = L_EMP(I);

EXCEPTION

/*BULK_ERRORS exception handler*/

 WHEN BULK_ERRORS THEN

/*Display the errors occurred during BULK DML transaction*/

 FOR J IN 1..SQL%BULK_EXCEPTIONS.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE(CHR(10));

 DBMS_OUTPUT.PUT_LINE('Error in UPDATE:
 '||SQL%BULK_EXCEPTIONS(J).ERROR_INDEX);

 DBMS_OUTPUT.PUT_LINE('Error Code is: '||sql%BULK_EXCEPTIONS(J).
ERROR_CODE);

 DBMS_OUTPUT.PUT_LINE('Error Message is: '||sqlerrm('-
 '||SQL%BULK_EXCEPTIONS(J).ERROR_CODE));

 END LOOP;

END;

/

Error in UPDATE: 3

Error Code is: 1407

Error Message is: ORA-01407: cannot update () to NULL

Error in UPDATE: 5

Error Code is: 1407

Error Message is: ORA-01407: cannot update () to NULL

PL/SQL procedure successfully completed.

Compiling and Tuning to Improve Performance

[254]

Rephrasing the conditional control

statements
Working on logical expressions for performance—sounds very ignored and rare,
but true. Performance of logical expressions can be improved by properly framing
the constructs. Though the conditional constructs are rarely attended areas in a PL/
SQL code for performance, the evaluation of conditional statements can considerably
affect code performance.

The evaluation of conditional statements such as IF THEN ELSE expression takes
place from left to right. As soon as the result of the evaluating condition is derived,
the control moves forward accordingly. Note that the OR condition is satisied if any
one of the operand is TRUE, while the AND condition is rejected if one of the operands
is found FALSE. It is an important consideration which would help us to place the
conditions in the logical condition.

Conditions with an OR logical operator
The OR logical operator requires any one of the operands to be true to return TRUE.

If one of the operands in the logical condition is more expected to be TRUE, it can be
placed at the leftmost position. As soon as the condition is evaluated, it is set as TRUE
and the PL/SQL engine would not move to execute other operands. This helps in
performance boost up where large conditions are involved.

Conditions with an AND logical operator
The AND logical operator requires all of the operands to be true to return TRUE. One
of the operands returning FALSE would make a complete condition to return FALSE.

If any one of the operands in the logical condition is expected to return FALSE, it
must be placed at the leftmost position. During the condition's evaluation, once
FALSE is conirmed, Oracle skips the further evaluation of the condition. Such
operands placing can help the Oracle server to easily hip-hop through the programs.

If there are more than one mutual conditions possible, the IF THEN ELSIF structure
can be used. Whichever IF (or ELSIF) condition is satisied, the corresponding
executable section is executed—the rest of the IF THEN braches are not evaluated.

Chapter 8

[255]

Enabling intra unit inlining
In conventional programming terminology, the program body of an inline
program is stored along with the program unit which references it. In context of
Oracle subprograms, the term inlining a subprogram refers to the replacing of
a subprogram call with the copy of an actual subprogram body itself. At major
occasions, this activity cohesively demonstrates better performance and thus, reaps
out better beneits along with modularity and call optimization.

Usually, when a program is executed, the PL/SQL engine searches for the program
deinition in the available objects' lists. It then validates the program, executes the
body, and maintains the result in the stack frame. Later it substitutes the results in
the calling program unit and proceeds for further execution. When an inline program
is called from a program unit, the PL/SQL engine replaces the call statement with
the copy of the program body. The copied program body works faster than the
program call execution method because the latter step is skipped. Note that the
Oracle optimizer is intelligent enough to decide upon a subprogram to be made
inline or not. Performance gains are possible only if the inline subprogram body
performs a small utility which is frequently used and is substitutable with its call.

Oracle recommends to inline the programs which perform static logic execution,
less referential, and very frequently used in the application. An optimized and
appropriate implementation of intra unit inlining feature can achieve 30-40 percent
of a visible difference in performance of a database application system. The intra unit
inlining can be traced from the session level warnings. Session level warnings can be
turned on by setting the PLSQL_WARNINGS parameter to ENABLE:ALL.

The inlining can be enabled to achieve one of the following objectives:

•	 Strictly inline all the program calls at high priority

•	 Intelligent and appropriate inlining decided by Oracle optimizer

•	 Manually measure and analyze the subprograms for inlining

Oracle offers two methods of inlining implementation:

•	 Oracle initialization parameter, PLSQL_OPTIMIZE_LEVEL, offers
transparent optimization

•	 Newly introduced PRAGMA INLINE allows explicit optimization
through inlining

Compiling and Tuning to Improve Performance

[256]

PLSQL_OPTIMIZE_LEVEL—the Oracle
initialization parameter
Oracle 10g introduced the initialization parameter PLSQL_OPTIMIZE_LEVEL to set
the working proile of the Oracle optimizer. The optimizer works in accordance
with PLSQL_OPTIMIZE_LEVEL and checks for the removal of dead code, subprogram
inlining, and construct optimization within the program.

A DBA sets the initialization parameter at the SYSTEM, SESSION, or OBJECT level.
The current compilation setting of a program unit can be queried from the
USER_PLSQL_OBJECT_SETTINGS dictionary view.

Prior to Oracle 11g's release, the parameter could accommodate only three valid
values that is, 0, 1, and 2. Oracle 11g introduced an additional optimization level—3.
The default value of the parameter is 2. The compiler's effort is directly proportional
to the parameter value—the higher the value, the greater the compiler's effort.

It can be set using the ALTER [SYSTEM | SESSION] command, as shown in the
following block:

/*Connect to view the current parameter setting*/

Conn sys/system as SYSDBA

Connected.

/*Display current setting for PLSQL_OPTIMIZE_LEVEL*/

SQL> show parameter plsql_optimize_level

NAME TYPE VALUE

------------------------------------ ----------- -

plsql_optimize_level integer 2

/*Modify the setting for the current session*/

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 1

/

Session altered.

Let us check the behavior of the Oracle optimizer and its effect on the performance at
different optimization levels.

Case 1—PLSQL_OPTIMIZE_LEVEL = 0
At this level, the optimizer is in the idle state. The optimizer does not effort in code
optimization and it only maintains the evaluation order of the program unit.

Chapter 8

[257]

Consider the following PL/SQL block which has two assignment statements and one
computational statement inside a big loop:

/*Connect as ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Alter the current session settings; set the PLSQL_OPTIMIZE_LEVEL to
0*/

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 0

/

Session altered.

/*Enable the serveroutput to display block output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_START_TIME NUMBER;

 L_END_TIME NUMBER;

 L_DEAD NUMBER;

 L_ASN1 NUMBER;

 L_ASN2 NUMBER;

/*Declare a local function*/

 FUNCTION F_NUM (P_N NUMBER) RETURN NUMBER IS

 BEGIN

 RETURN P_N;

 END;

 BEGIN

/*Capture the start time*/

 L_START_TIME := DBMS_UTILITY.GET_TIME();

 FOR I IN 1..100000000

 LOOP

/*Perform dummy operations within the loop*/

 L_DEAD := 0;

 L_ASN1 := 1;

 L_ASN2 := F_NUM(I) + 1;

 END LOOP;

/*Capture the end time*/

 L_END_TIME := DBMS_UTILITY.GET_TIME();

/*Display the time consumed in the execution*/

 DBMS_OUTPUT.PUT_LINE('Execution time:'||TO_CHAR(L_END_TIME -
 L_START_TIME));

 END;

/

Execution time:4089

PL/SQL procedure successfully completed.

Compiling and Tuning to Improve Performance

[258]

Case 2—PLSQL_OPTIMIZE_LEVEL = 1
At this level, the Oracle optimizer applies basic optimization techniques to a
program unit. It ignores the redundant and irrelevant code from the program unit.

We will modify the parameter value to 1 and execute the last block again.
Check the performance:

/*Connect as ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Alter the current session settings; set the PLSQL_OPTIMIZE_LEVEL to
1*/

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 1

/

Session altered.

/*Enable the serveroutput to display block output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_START_TIME NUMBER;

 L_END_TIME NUMBER;

 L_DEAD NUMBER;

 L_ASN1 NUMBER;

 L_ASN2 NUMBER;

/*Declare a local function*/

 FUNCTION F_NUM (P_N NUMBER) RETURN NUMBER IS

 BEGIN

 RETURN P_N;

 END;

 BEGIN

/*Capture the start time*/

 L_START_TIME := DBMS_UTILITY.GET_TIME();

 FOR I IN 1..100000000

 LOOP

/*Perform dummy operations within the loop*/

 L_DEAD := 0;

 L_ASN1 := 1;

 L_ASN2 := F_NUM(I) + 1;

 END LOOP;

/*Capture the end time*/

 L_END_TIME := DBMS_UTILITY.GET_TIME();

/*Display the time consumed in the execution*/

 DBMS_OUTPUT.PUT_LINE('Execution time:'||TO_CHAR(L_END_TIME -
 L_START_TIME));

Chapter 8

[259]

 END;

/

Execution time:3001

PL/SQL procedure successfully completed.

The execution time has reduced by 30 percent when executed with optimization level
1. The reduction in the execution time is credited to the removal of dead code that is
(L_DEAD := 0), it is not executed for the complete loop.

Case 3—PLSQL_OPTIMIZE_LEVEL = 2
This is the intelligent and standard optimization level of an optimizer, where it
intelligently manages the code by refactoring it, separating out the dead code, and
applying advanced techniques to restructure the code for best performance.

We will modify the parameter value again and check the performance:

/*Connect as ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Alter the current session settings; set the PLSQL_OPTIMIZE_LEVEL to
2*/

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 2

/

Session altered.

/*Enable the serveroutput to display block output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_START_TIME NUMBER;

 L_END_TIME NUMBER;

 L_DEAD NUMBER;

 L_ASN1 NUMBER;

 L_ASN2 NUMBER;

/*Declare a local function*/

 FUNCTION F_NUM (P_N NUMBER) RETURN NUMBER IS

 BEGIN

 RETURN P_N;

 END;

 BEGIN

/*Capture the start time*/

 L_START_TIME := DBMS_UTILITY.GET_TIME();

 FOR I IN 1..100000000

Compiling and Tuning to Improve Performance

[260]

 LOOP

/*Perform dummy operations within the loop*/

 L_DEAD := 0;

 L_ASN1 := 1;

 L_ASN2 := F_NUM(I) + 1;

 END LOOP;

/*Capture the end time*/

 L_END_TIME := DBMS_UTILITY.GET_TIME();

/*Display the time consumed in the execution*/

 DBMS_OUTPUT.PUT_LINE('Execution time:'||TO_CHAR(L_END_TIME -
 L_START_TIME));

 END;

/

Execution time:2508

PL/SQL procedure successfully completed.

The code performance has been enhanced by 18 percent. The credit goes to the
analytic behavior of our optimizer.

Case 4—PLSQL_OPTIMIZE_LEVEL = 3
It is a new level which got introduced in Oracle 11g. It performs strict optimization
by inlining the local subprograms at high priority and immense code restructuring.
It is used for instantaneous results in a session. Forced inlining of intra unit
subprograms can be traced by enabling session level warnings:

/*Connect as ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Alter the current session settings; set the PLSQL_OPTIMIZE_LEVEL to
2*/

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 3

/

Session altered.

/*Enable the serveroutput to display block output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

 L_START_TIME NUMBER;

 L_END_TIME NUMBER;

 L_DEAD NUMBER;

 L_ASN1 NUMBER;

 L_ASN2 NUMBER;

/*Declare a local function*/

 FUNCTION F_NUM (P_N NUMBER) RETURN NUMBER IS

Chapter 8

[261]

 BEGIN

 RETURN P_N;

 END;

 BEGIN

/*Capture the start time*/

 L_START_TIME := DBMS_UTILITY.GET_TIME();

 FOR I IN 1..100000000

 LOOP

/*Perform dummy operations within the loop*/

 L_DEAD := 0;

 L_ASN1 := 1;

 L_ASN2 := F_NUM(I) + 1;

 END LOOP;

/*Capture the end time*/

 L_END_TIME := DBMS_UTILITY.GET_TIME();

/*Display the time consumed in the execution*/

 DBMS_OUTPUT.PUT_LINE('Execution time:'||TO_CHAR(L_END_TIME -
 L_START_TIME));

 END;

/

Execution time:1109

PL/SQL procedure successfully completed.

Amazed! It takes just half of the execution time taken in the last optimization setting. It
is because it inlines all the calls of the local function F_NUM. Besides inlining, it evades
the execution of the L_DEAD and L_ASN1 assignment statements. The results are bafling
enough to justify the intelligence of the Oracle optimizer and its governance with a
single knob that is, PLSQL_OPTIMIZE_LEVEL. The graph plots the preceding observations
to show the performance gains with the optimizer level. When the optimization level is
changed from 0 to 2, performance can be improved by nearly 40 percent:

E
xe

c
u
ti

o
n
 T

im
e
 (

in
 m

s
)

PLSQL_OPTIMIZE_LEVEL

Execution Time (in ms)

1 2 3 4

0 1 2 3

4089 3001 2508 1109

PLSQL_OPTIMIZE_LEVEL

0

500
1000

1500

2000

2500

3000

3500

4000

4500 0

1

2

3

4089 25083001 1109

Code execution time versus PLSQL_OPTIMIZE_LEVEL

Compiling and Tuning to Improve Performance

[262]

The optimization level degree 2 is the best suited for most of the database
applications. Besides providing an intelligent optimization scheme, it keeps the
scope for the developers to increase the degree of optimization by explicitly inlining
the subprograms using PRAGMA INLINE. The optimization degree 3 performs the
aggressive optimization and forced inlining which might not be required every time.
However, it can be set at session level for quick illustrations.

PRAGMA INLINE
We learned the effect of the optimization level and subprogram inlining on
the program performance. Once PLSQL_OPTIMIZER_LEVEL is set by the DBA,
the optimization strategy is transparent to the end user. For this reason, Oracle
introduced a pragma (PRAGMA INLINE) to authorize the user to explicitly inline a
subprogram of its own choice. In the last section, we saw that PLSQL_OPTIMIZE_
LEVEL 2 will prioritize the subprograms for inlining as per its own intelligence, while
PLSQL_OPTIMIZE_LEVEL 3 will forcibly inline all the subprogram calls. While the
latter setting might skip our expected subprogram, the latter setting might inline the
expected subprogram along with the unnecessary inlining(inlinings).

PRAGMA INLINE is the ifth pragma in Oracle after
AUTONOMOUS_TRANSACTION, EXCEPTION_INIT,
RESTRICT_REFERENCES, and SERIALLY_REUSABLE.

PRAGMA INLINE can be used with PLSQL_OPTIMIZER_LEVEL 2 and PLSQL_
OPTIMIZER_LEVEL 3. When PLSQL_OPTIMIZE_LEVEL is set to 2, the pragma can
be used to explicitly inline a subprogram call or explicitly avoid the inlining of a
subprogram. When PLSQL_OPTIMIZE_LEVEL is set to 3, the pragma can only be used
to avoid the inlining of a subprogram call.

PRAGMA INLINE has to be speciied once, just before the subprogram call. The inlining
effect would be persistent for all the subsequent calls to the subprogram, unless the
effect is withdrawn. Syntactically, PRAGMA INLINE can be used as follows:

PRAGMA INLINE (subprogram name, [YES | NO]);

The effect of inlining can be conirmed through PL/SQL session level warnings. The
warnings display the information messages at each stage of the intra unit inlining.
The warnings can be enabled at the session level using PLSQL_WARNINGS.

Let us examine the effect of PRAGMA INLINE with a PL/SQL program. The PL/SQL
procedure sums up the following series:

(1*2) + (2*2) + (3*2) + …+ (n*2)

Chapter 8

[263]

The following program will demonstrate the usage of PRAGMA INLINE when the
PLSQL_OPTIMIZE_LEVEL is set as 2:

/*Connect as ORADEV USER*/

Conn ORADEV/ORADEV

Connected.

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL=2

/

Session altered.

Note that a local subprogram DUBN calculates the sum of an index and candidate for
intra inlining. It is called inside the procedure to sum up the series:

/*Enable the PLSQL_WARNINGS to capture the warnings*/

alter session set plsql_warnings = 'enable:all'

/

Session altered.

/*Create a procedure*/

CREATE OR REPLACE PROCEDURE P_SUM_SERIES(P_LIMIT NUMBER)

IS

 L_SERIES NUMBER := 0;

 L_ST_TIME NUMBER;

 L_END_TIME NUMBER;

/*Declare a local function which is candidate for inlining*/

 FUNCTION DUBN (P_NUM NUMBER) RETURN NUMBER IS

 BEGIN

 RETURN P_NUM * 2;

 END DUBN;

 BEGIN

/*Capture the start time*/

 L_ST_TIME := DBMS_UTILITY.GET_TIME();

/*Begin the loop for series calculation*/

 FOR J IN 1..P_LIMIT

 LOOP

/*Set inlining for the local subprogram*/

 PRAGMA INLINE (DUBN, 'YES');

 L_SERIES := L_SERIES + DUBN(J);

 END LOOP;

/*Capture end time*/

 L_END_TIME := DBMS_UTILITY.GET_TIME();

/*Display the time consumed with inlining of local function*/

 DBMS_OUTPUT.PUT_LINE('Execution time with inlining:'||TO_CHAR(L_
END_TIME -
 L_ST_TIME));

Compiling and Tuning to Improve Performance

[264]

/*Repeat the steps with inlining off*/

 L_ST_TIME := DBMS_UTILITY.GET_TIME();

 FOR J IN 1..P_LIMIT

 LOOP

/*Set off inlining for the local function*/

 PRAGMA INLINE (DUBN, 'NO');

 L_SERIES := L_SERIES + DUBN(J);

 END LOOP;

 L_END_TIME := DBMS_UTILITY.GET_TIME();

 DBMS_OUTPUT.PUT_LINE('Execution time without inlining:'||TO_
CHAR(L_END_TIME
 - L_ST_TIME));

 END;

/

Procedure created.

Warnings for the procedure compiled in the preceding code snippet can be queried
from the USER_ERRORS dictionary view:

/*Select the warnings for the procedure P_SUM_SERIES*/

SELECT line, text

FROM user_errors

WHERE name='P_SUM_SERIES'

/

LINE TEXT

---- ---

 1 PLW-05018: unit P_SUM_SERIES omitted optional AUTHID clause;
default value
 DEFINER used

 22 PLW-06004: inlining of call of procedure 'DUBN' requested

 39 PLW-06008: call of procedure 'DUBN' will not be inlined

 22 PLW-06005: inlining of call of procedure 'DUBN' was done

Warnings conirm the subprogram inlining along with the line number where the
request was made through PRAGMA INLINE and where it is actually done.

Now let us execute the P_SUM_SERIES procedure for a bigger value to observe the
difference of subprogram inlining:

/*Executing the procedure with sample limit*/

SQL> EXEC P_SUM_SERIES (1000000);

Execution time with inlining:16

Execution time without inlining:28

PL/SQL procedure successfully completed.

Chapter 8

[265]

Summary
In this chapter, we learned the effect of compilation settings on the application
performance. We understood the difference between interpreted/native compilation
modes and learned the real native compilation feature introduced in Oracle 11g.
We covered the PL/SQL tuning recommendations supported with demonstrations.
Towards the end, we saw the effect of the optimization level on code execution
through illustrations, intra unit inlining feature, and usage of PRAGMA INLINE in
programs to explicitly inline subprogram calls.

In the next chapter, we will cover one of the most talked about features of Oracle 11g.
The feature is known as result caching which promises tremendous performance
gains in database applications.

Practice exercise
1. Identify the nature of the program which is best suited for the interpreted

mode of compilation.

a. The program unit contains multiple SQL statements.

b. The program unit has been just developed and is in debug stage.

c. The program unit uses collections and bulk bind statements.

d. The program unit is in production phase.

2. Choose the correct statements about the real native compilation mode
in Oracle 11g;

a. The compilation method uses C compiler to convert the program into the
equivalent C code.

b. The compilation method mounts the shared libraries through the
PLSQL_NATIVE_LIBRARY_DIR and PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT
parameters.

c. The compilation does not use C compiler but converts the program unit
directly to the M code.

d. The real native compilation is supported for RAC environments and par-
ticipates in the backup recovery processes.

Compiling and Tuning to Improve Performance

[266]

3. Determine the behavior of the PLSQL_OPTIMIZE_LEVEL optimizer when it
has been set to 3.

a. The optimizer would inline the programs which are necessary.

b. The optimizer would inline all the programs irrespective of the gains.

c. The optimizer would inline only those subprograms which have
PRAGMA INLINE.

d. The setting has no effect on inlining of subprograms.

4. Choose the correct statements about the compilation setting in Oracle:

a. From Oracle 11g, the default value of PLSQL_CODE_TYPE is NATIVE.

b. An object can be recompiled in a compilation mode different from the
current database setting.

c. During the database upgrade, PLSQL_CODE_TYPE must be modiied in the
instance pile.

d. In a real native compilation, the libraries generated are stored in a secured
ile system.

5. Identify the tuning tips in the following PL/SQL block:

DECLARE

CURSOR C IS

 SELECT ENAME, SAL, COMM

 FROM EMPLOYEES;

 L_COMM NUMBER;

 BEGIN

 FOR I IN C

 LOOP

 L_COMM := I.SAL + ((I.COMM/100) * (I.SAL * 12));

 DBMS_OUTPUT.PUT_LINE (I.ENAME||' earns '||L_COMM||' as
 commission');

 END LOOP;

 END;

/

a. Use BULK COLLECT to select employee data.

b. Declare L_COMM as NOT NULL.

c. Use PLS_INTEGER for L_COMM.

d. No tuning required.

Chapter 8

[267]

6. Which of the statements are true about inlining in PL/SQL subprograms?

a. The optimizer can inline only standalone stored functions.

b. The optimizer can inline only locally declared subprograms.

c. Inlining is always useful in performance irrespective of the size
of the subprogram.

d. The optimizer cannot identify any subprogram for inlining when
the optimizer level is set at 0.

7. Examine the following code and determine the output:

DECLARE

 FUNCTION F_ADD (P_NUM NUMBER)

 RETURN NUMBER

 IS

 BEGIN

 RETURN P_NUM + 10;

 END;

 BEGIN

 FOR I IN 122..382

 LOOP

 PRAGMA INLINE (F_ADD,'YES');

 L_SUM := L_SUM + F_ADD (I);

 END LOOP;

 END;

/

PLSQL_OPTIMIZE_LEVEL is set as 2.

a. The local function F_ADD would not be called inline unless
PLSQL_OPTIMIZE_LEVEL is set as 3.

b. The local function F_ADD may be called inline because
PLSQL_OPTIMIZE_LEVEL is set as 2.

c. The local function F_ADD would be called inline because PRAGMA INLINE
marks it for inline.

d. Inlining cannot be done for locally declared subprograms.

8. The libraries generated from the real native compilation are stored in the
SYSAUX tablespace.

a. True

b. False

Compiling and Tuning to Improve Performance

[268]

9. Suggest the tuning considerations in the following PL/SQL block:

DECLARE

 L_SUM NATURALN := 0;

 L_ID VARCHAR2(10);

BEGIN

 L_ID := 256;

 L_SUM := L_ID * 1.5;

END;

a. The data type of L_SUM can be changed to NATURAL and nullity can be
veriied in the executable section.

b. L_SUM must not be initialized with zero.

c. The multiple 1.5 must be assigned to a variable.

d. L_ID must be of an appropriate data type such as NUMBER or PLS_INTEGER.

10. Identify the correct statements about PRAGMA INLINE.

a. It is the ifth pragma in Oracle besides AUTONOMOUS_TRANSACTION,
EXCEPTION_INIT, RESTRICT_REFERENCE, and SERIALLY_REUSABLE.

b. It does not work for overloaded functions.

c. It does not work for PLSQL_OPTIMIZE_LEVEL = 1.

d. PRAGMA INLINE (<Function name>,' YES') is meaningless at
PLSQL_OPTIMIZE_LEVEL = 3, because the optimizer inlines all the
subprograms.

Caching to Improve

Performance
Performance optimization is an immortal challenge in Oracle applications which
demands sound essentials of a DBA and logical abilities of a developer. Every
release of Oracle promises for new features to enhance the performance and
scalability of an application.

In the last chapter, we saw the difference made by real native compilation and intra
unit inlining. Another innovation was brought to notice in Oracle 11g and it was
data caching. Data caching is a common feature to improvise upon the application
performance. In the past, the architectural implementation of caching used to cache
the data sets in the SGA buffer cache, but not the SQL with results. Oracle 11g
presents a concrete effective feature which can restore the results in a dedicated
component of SGA. It is not like the traditional features which boost performance
but it is an alternate approach to yield better performance.

In simple terms, the result of an operation will be temporarily stored along with the
operation speciications. Whenever the same operation would be repeated, instead
of working out the whole operation again, system would directly return the
previously stored result. We will cover the server result caching feature under
the following topics:

•	 Introduction to result cache

	° SQL result cache

	° PL/SQL function result cache

	° OCI client result cache

•	 Coniguring the database for the server result cache
	° The DBMS_RESULT_CACHE package

Caching to Improve Performance

[270]

•	 Implementing result cache in SQL

	° Manual result cache

	° Automatic result cache

•	 Implementing result cache in PL/SQL

Introduction to result cache
The term cache is not new in the Oracle family. Prior to Oracle 11g, we have often
heard of caching queries in SGA. Oracle 11g makes major enhancements in this
area and evolves two new caching features namely, server result cache and client
result cache.

Result cache allows the storage of result sets from a SQL query or PL/SQL
function in a speciic memory location, known as cache memory, along with the
query speciications. Now, whenever the same SQL or the function (with the same
speciications) is re-executed, the server picks up the result directly from the cache
memory. The approach bypasses the SQL or function execution process—thus,
saving a substantial amount of time. The server makes almost no effort in executing
the SQL or PL/SQL function by employing cache memory for frequently executing
queries and functions.

The speciic memory location or cache memory is a new SGA memory component,
dedicated for cached results. The query speciication includes the SQL and the
input values required in the WHERE clause predicates. Since the cached results are
maintained at the server, they are sharable across the sessions connecting to the
same server.

The result cache feature operates in two lavors as follows:

•	 Server-side result cache

	° SQL result cache

	° PL/SQL function result cache

•	 Client OCI result cache

Chapter 9

[271]

Server-side result cache
The server-side result cache is used only for the SQL queries and PL/SQL functions.
The feature can be enabled by setting newly inducted initialization parameters. The
parameter description and their usage have been discussed later in this chapter.
Once the cache coniguration is completed at the server, results from SQL queries
and PL/SQL functions can be held at the server. The cache coniguration includes
the setting of the cache mode, cache memory size, and cache result size. We will
overview the coniguration portion in the next section.

Oracle 11g segregates a new component of SGA known as result cache. It is part
of a shared pool and the server allocates a small part of the shared pool to it before
its size is explicitly allocated by the user. We will see how the explicit allocation of
the cache memory size depends on the overall memory component structure, later
in this chapter. Once the cache component is allocated, the Automatic Memory
Management (AMM) feature internally manages the concurrency among the
memory components.

The following diagram gives a rough demonstration of the new memory
infrastructure in Oracle 11g:

Shared Pool

Shared SQL Area Private

SQL Area

Dictionary

Views

Server Result

Cache
Reserved Pool

SQL Cache

PL/SQL Cache

SQL statements

SQL Execution Plans

Parsed and compiled PL/SQL programs

Let us briely look over the SQL and PL/SQL result cache.

Caching to Improve Performance

[272]

SQL query result cache
By the virtue of implementation of the server result cache, results of SQL queries can
be cached under the cache component of the Oracle server memory infrastructure.

The results of a frequently used SQL can be cached using a RESULT_CACHE hint.
When a SQL query with the RESULT_CACHE hint is executed on a cache conigured
server, the server caches the query results along with its signature. The next time
when the same query is re-executed, the server inds the result in its cache and
instantly produces the result to the user. The query execution process is completely
ignored and, hence, the performance bar raises signiicantly. Data warehousing
environments are the top rated beneiciaries from the feature. The server cache
helps to distribute the workload of the server in parallel query executions. Oracle
recommends caching the results of frequently used queries which are likely to take
more time to fetch the results. Intelligent caching is preferable over forced caching.

The cached results get invalidated when the table is altered or the data
contained is updated.

The NO_RESULT_CACHE hint can be used to direct the server
to ignore the caching for a SQL query.

PL/SQL function result cache
The PL/SQL result cache is the second component of the server-side result cache
feature. The PL/SQL function can be marked for caching and it includes a new
RESULT_CACHE clause in its header. During the irst execution of the function, the
server caches the results returned by the function along with the input parameters
(if any). Next time, when the function is used again with the same parameters,
the server picks up the result from the cache, instead of executing it again.

The results returned by the function can be retained in the server cache, until the
function body has been recompiled or modiied. Once the function deinition
undergoes logical or structural changes, all its earlier cached results are purged
from the cache memory at the server. There is no additional coniguration required
for the PL/SQL cache, the server-side result cache coniguration works for both SQL
and PL/SQL.

Similar to the SQL result cache, the result cached for a PL/SQL function is also
available across the active sessions of the database.

Chapter 9

[273]

OCI client results cache
The caching feature allows OCI clients to fetch the result sets without accessing the
database server memory but the result sets which are stored in the process (client's)
memory are not. The process memory is enabled and conigured at the database level
and all OCI-based clients access it. Note that client result caching and database result
caching are exclusive and independent methods of caching the data in memory.

Now, since the client results are cached into the client's memory cache component, it
becomes easy for the OCI-based client to access their own cache memory instead of
hitting the sever cache. If the required result set is found under the client cache, you
save the execution time and SQL*net round trip time of the query.

Besides the result caching options which work within a
database, Oracle provides a database caching option known

as In Memory Database (IMDB) cache option. The IMDB
cache option allows the caching of data from the frequently
used database tables which share referential integrity amongst

them. The group of cached tables is known as cache group,

while a collection of cache groups is known as cache grid.

Coniguring the database for the server
result cache
In this section, we will learn the coniguration of the server-side result cache feature.
Oracle 11g adds four new initialization parameters to DBA's basket to conigure the
caching feature on a database server. These parameters can be set at the database
level and session level. Since these settings enable caching at the server side, results
from both SQL and PL/SQL namespaces can be cached under the server cache.

The parameters are as follows:

•	 RESULT_CACHE_MODE: This parameter controls the caching operation by
the server. The server operates the caching feature in three modes—AUTO,
MANUAL, and FORCE. Check the server behavior in these modes. The result is
held in the cache memory until it is lushed off explicitly. The cached results
are invalidated when the result data is updated in the table or the table
structure is altered.

	° AUTO: The server decides on its own whether the result of the SQL
query has to be cached or not. The server takes the decision based
on the query cost (as calculated by the optimizer) and the frequency
of its usage.

Caching to Improve Performance

[274]

	° MANUAL: The server caches the results of only the queries, which are
speciically marked for the result cache using the RESULT_CACHE
hint. It is the default operation mode of the server at the time of
the installation. The mode of operation is sometimes referred as
manual result cache.

	° FORCE: The server strictly caches the results of all possible SQL
statements irrespective of the RESULT_CACHE hint speciication in the
query. Besides the queries with caching limitations, only the queries
with the NO_RESULT_CACHE hint are ignored for caching. The caching
feature in the FORCE mode is known as automatic result cache.

•	 RESULT_CACHE_MAX_SIZE: The parameter allocates the cache memory as part
of the shared pool. It must have a deinite value to enable the caching feature.
Certain recommendations from Oracle to set this parameter are as follows:

	° 0.25 percent of the MEMORY_TARGET parameter value.

	° 0.5 percent of the SGA_TARGET parameter value.

	° 1 percent of the SHARED_POOL_SIZE parameter value.

	° In addition to the above recommendations, the cache memory size
cannot go beyond 75 percent of the shared pool.

•	 RESULT_CACHE_MAX_RESULT: This parameter allocates the maximum size of a
single result set in the cache memory. It is expressed as a percentage value of
RESULT_CACHE_MAX_SIZE. It must be a positive integral value in the range of
0 to 100. By default, its value is 5 percent.

•	 RESULT_CACHE_REMOTE_EXPIRATION: This parameter deines the retention
time of a result cached from a remote object. It is expressed in minutes and its
value is zero, by default.

The above parameters can be set for a system or a session using the ALTER [SYSTEM |
SESSION] command, as shown in the following code syntax:

ALTER SYSTEM SET [PARAMETER] = [VALUE]

Note that the session level setting enables the session level caching.

Suppose the server has MEMORY_TARGET of 812 MB. The DBA tries to set the cache
mode as MANUAL, cache memory as 200 MB, and cache result size as 20 percent:

/*Connect to SYSDBA*/
Conn sys/system as SYSDBA
Connected.

/*Alter system to set cache mode*/
ALTER SYSTEM SET RESULT_CACHE_MODE = MANUAL

/

Chapter 9

[275]

Session altered.

/*Alter system to set max cache size*/

ALTER SYSTEM SET RESULT_CACHE_MAX_SIZE = 200M

/

Session altered.

/*Alter system to set max cache results*/

ALTER SYSTEM SET RESULT_CACHE_MAX_RESULT = 20

/

Session altered.

/*Alter system to set cache result retention time*/

ALTER SYSTEM SET RESULT_CACHE_REMOTE_EXPIRATION = 100

/

Session altered.

The caching parameter settings can be queried from the V$PARAMETER
dictionary view:

SELECT name, value

FROM v$parameter

WHERE name LIKE 'result_cache%'

/

NAME VALUE

------------------------------ --------------------

result_cache_mode MANUAL

result_cache_max_size 209715200

result_cache_max_result 100

result_cache_remote_expiration 100

In addition to the initialization parameters shown in the preceding code snippet,
Oracle 11g keeps a server process RCBG for Oracle RAC systems. It is used to handle
the messages generated by the server processes which are attached to the instances in
Oracle RAC architecture:

/*Connect as DBA*/

Conn sys/system as sysdba

Connected.

/*Query the process details from V$BGPROCESS*/

SQL> SELECT NAME, DESCRIPTION

FROM V$BGPROCESS

WHERE NAME = 'RCBG'

/

NAME DESCRIPTION

-------------------- -----------------------------------

RCBG Result Cache: Background

Caching to Improve Performance

[276]

The DBMS_RESULT_CACHE package
To coordinate the result cache activities at the server, Oracle 11g introduced a new
built-in package DBMS_RESULT_CACHE. The package is owned by the SYS user. The
package can be used to perform query result cache maintenance activities such as
lushing, invalidating cache results dependent on an object, generating the memory
report, and checking the cache status.

The public constants used in the package are as follows:

DBMS_RESULT_CACHE constants (reference: Oracle documentation)

STATUS_BYPS CONSTANT VARCHAR(10) := 'BYPASS';

STATUS_DISA CONSTANT VARCHAR(10) := 'DISABLED';

STATUS_ENAB CONSTANT VARCHAR(10) := 'ENABLED';

STATUS_SYNC CONSTANT VARCHAR(10) := 'SYNC';

The subprograms used in the package are described in the following table:

DBMS_RESULT_CACHE subprograms (reference: Oracle documentation)

BYPASS procedure Sets the bypass mode for the result cache

FLUSH function and procedure Attempts to remove all the objects from the
result cache, and depending on the arguments
retains or releases the memory and retains or
clears the statistics

INVALIDATE functions and
procedures

Invalidates all the result-set objects that are
dependent upon the speciied dependency object

INVALIDATE_OBJECT functions
and procedures

Invalidates the speciied result-set object(s)

MEMORY_REPORT procedure Produces the memory usage report for the
result cache

STATUS function Checks the status of the result cache

For illustration, the cache memory report can be generated using the
MEMORY_REPORT procedure, as shown in the following code snippet. Note that
the cache size speciications are expressed as a percentage of shared pool:

/*Connect to sysdba*/

SQL> conn sys/system as sysdba

Connected.

/*Enable the serveroutput variable to display the block messages*/

SQL> SET SERVEROUTPUT ON

Chapter 9

[277]

/*Generate the cache memory report*/

SQL> exec dbms_result_cache.memory_report

R e s u l t C a c h e M e m o r y R e p o r t

[Parameters]

Block Size = 1K bytes

Maximum Cache Size = 200M bytes (200K blocks)

Maximum Result Size = 40M bytes (40K blocks)

[Memory]

Total Memory = 9460 bytes [0.004% of the Shared Pool]

... Fixed Memory = 9460 bytes [0.004% of the Shared Pool]

... Dynamic Memory = 0 bytes [0.000% of the Shared Pool]

PL/SQL procedure successfully completed.

Since no results have been cached until now, the report shows 0 bytes for dynamic
memory. The cache memory report, shown in the preceding code snippet, also serves
as a conirmation for the feature being enabled successfully on the database server.
In case the coniguration is not proper, the memory report simply displays the
following message:

SQL> EXEC dbms_result_cache.memory_report

R e s u l t C a c h e M e m o r y R e p o r t

Cache is disabled.

PL/SQL procedure successfully completed.

We can check the current status of cache on the server by using the STATUS function
as follows:

SQL> SELECT dbms_result_cache.status FROM DUAL

/

STATUS

--

ENABLED

Implementing the result cache in SQL
As we learned earlier, the database must be conigured to enable server-side result
caching. Let us now go through illustrations of the result cache in SQL.

Manual result cache
If the result cache operation mode is set as MANUAL, the caching feature is known as
manual result cache. Here, the user has to explicitly specify the RESULT_CACHE hint
in order to cache the query result. The Oracle server would not automatically cache
any result set.

Caching to Improve Performance

[278]

The RESULT_CACHE_MODE parameter can be set by the DBA to enable manual
result caching:

/*Connect as SYSDBA*/

Conn sys/system as sysdba

Connected.

/*Set the parameter as Manual*/

ALTER SYSTEM SET RESULT_CACHE_MODE=MANUAL

/

System altered.

We will lush the cache memory and shared pool to clear all the earlier
cached results:

/*Flush all the earlier cached results*/

SQL> EXEC DBMS_RESULT_CACHE.FLUSH

/

PL/SQL procedure successfully completed.

/*Flush the shared pool*/

SQL> alter system flush shared_pool

/

System altered.

Once the cache operation mode is set, the SQL query can be executed using the
RESULT_CACHE optimizer hint. The hint instructs the server to cache the results
of the particular query in the cache component of the memory:

/*Connect as ORADEV*/

Conn ORADEV/ORADEV

Connected.

/*Execute the query to get SMITH's salary*/

SQL> SELECT /*+RESULT_CACHE*/ sal

 FROM employees

 WHERE EMPNO = 7369

/

 SAL

 800

Generate the explain plan for the SQL query:

/*Generate the explain plan for the query*/

SQL> EXPLAIN PLAN FOR

 SELECT /*+RESULT_CACHE*/ sal

 FROM employees

Chapter 9

[279]

 WHERE empno = 7369

/

Explained.

Query the explain plan from PLAN_TABLE:

/*Check the Explain plan*/

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY)

/

Refer to the following screenshot for the output of the preceding code block
as follows:

Note the RESULT_CACHE operation in the explain plan. It implies that the Oracle
server has stored the query results in the cache memory with the cache ID
6jwjx7ap21w71g658hxt5vwng3. The same cache ID would be used for the further
re-execution of the same SQL.

In addition, we have a new section under PLAN_TABLE_OUTPUT as result cache
information (identiied by operation ID). This section represents the result cache
metadata for this query. The result cache report contains the dependent tables
information.

Automatic result cache
If the result cache operation mode is FORCE, the caching feature becomes automatic
and the server strictly caches results of all the queries executed. The RESULT_CACHE
hint is obsolete and ineffective at the time of automatic result caching. For any query
(which is rarely executed), a NO_RESULT_CACHE hint can be speciied to override the
server operation mode and ignore the query results for caching.

Let us check out how it works:

/*Connect as sysdba*/

Conn sys/system as sysdba

Connected

/*Alter the system to set the new cache mode*/

ALTER SYSTEM SET RESULT_CACHE_MODE=FORCE

Caching to Improve Performance

[280]

/

System altered.

/*Flush all the earlier cached results*/

SQL> EXEC DBMS_RESULT_CACHE.FLUSH

/

PL/SQL procedure successfully completed.

/*Flush the shared pool*/

SQL> alter system flush shared_pool

/

System altered.

Now, execute the same SQL query without the RESULT_CACHE hint:

/*Connect as USER*/

SQL> CONN ORADEV/ORADEV

Connected.

/*Execute the below SQL to generate the explain plan for the query*/

SQL> EXPLAIN PLAN FOR

 SELECT sal

 FROM employees

 WHERE empno=7369

/

Explained.

/*Query the Explain plan*/

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY)

/

Refer to the following screenshot for the output of the preceding code block:

The explain plan shows the RESULT_CACHE component and its cache ID in the cache
memory. Note that no hint has been given in the SQL query, but Oracle caches the
query results by virtue of its operation mode.

Chapter 9

[281]

Result cache metadata
Oracle facilitates the monitoring of real-time cache information in the database
through result cache dynamic performance views. These views are owned by SYS
and content is always in synchronization with the latest database activities.

Actual dynamic performance views are preixed with V_$.
Their public synonyms are preixed with V$.

The following table enlists the result cache dynamic views along with their purpose:

Synonym Purpose

V$RESULT_CACHE_STATISTICS Records the server cache performance stats,
including block count and create count values

V$RESULT_CACHE_MEMORY Captures the server cache memory stats (in
terms of blocks)

V$RESULT_CACHE_OBJECTS Captures the cached result sets information
including status

V$RESULT_CACHE_DEPENDENCY Captures the dependencies of a result cache

Retrieve the cached result information. The dynamic view V$RESULT_CACHE_
OBJECTS captures the information of the cached results. Some of
the accomplishments of this view are as follows:

•	 A result in the cache memory stores the query result as the Result type and
caches its dependent object information as the Dependency type.

•	 The results are cached by the user ID as their creator ID.

•	 The namespace (SQL or PL/SQL) associated with a cached result
differentiates the caching from the two components of the server-side
result cache.

The STATUS column determines the validity status of a cached result. The status of a
cached result can be one of the following:

•	 NEW: An under construction cache result

•	 PUBLISHED: A cache result ready to be used

•	 INVALID; An invalid result due to data update or DDL on the dependent object

•	 EXPIRED: An expired cached result that is, the result which has crossed the
expiration time

Caching to Improve Performance

[282]

•	 BYPASS: The cached result has been marked for bypass and in bypass mode,
the existing cached results are ignored in the query optimizations and new
results are not cached

Out of the preceding status list, only the results with the PUBLISHED status are the
healthiest ones to be used by other SQL queries:

/*Connect as SYSDBA*/

Conn sys/system as sysdba

Connected.

/*Query the User id of the ORADE user to query its cached results*/

SQL> SELECT user_id

 FROM dba_users

 WHERE username = 'ORADEV'

/

 USER_ID

 97

/*Query the cached results*/

SQL> SELECT id, type, status, cache_id

 FROM V$RESULT_CACHE_OBJECTS

 WHERE CREATOR_UID = 97

/

 ID TYPE STATUS CACHE_ID

--- ---------- --------- ----------------------------------

 30 Dependency Published ORADEV.EMPLOYEES

 31 Result Published 6jwjx7ap21w71g658hxt5vwng3

/*Query the SQL associated with the above cached results*/

SQL> SELECT id, name, namespace

 FROM V$RESULT_CACHE_OBJECTS

 WHERE cache_id = '6jwjx7ap21w71g658hxt5vwng3'

/

Chapter 9

[283]

Query result cache dependencies
The dependent objects of a given cache result can be queried from the
dynamic performance V$RESULT_CACHE_DEPENDENCY. The RESULT_ID column
of the view references the ID column of the Result type cache entries in
V$RESULT_CACHE_OBJECTS:

/*Connect as SYSDBA*/

Conn sys/system as sysdba

Connected.

/*Query result cache dependencies for cache id 31*/

SQL> SELECT *

 FROM V$RESULT_CACHE_DEPENDENCY WHERE

 RESULT_ID = 31

/

 RESULT_ID DEPEND_ID OBJECT_NO

---------- ---------- ----------

 31 30 80571

/*Verify the dependent object in DBA_OBJECTS table*/

SQL> SELECT owner, object_name

 FROM dba_objects

 WHERE object_id = 80571

/

OWNER OBJECT_NAME

------------------------------ ---------------------------------------

ORADEV EMPLOYEES

Cache memory statistics
The current cache memory statistics can be queried from the V$RESULT_CACHE_
STATISTICS dynamic view. It gives the maximum block count and used block
count information.

Create Count Success denotes the number of results which are successfully cached
in the server result cache.

Find Count Value denotes the number of cached results which are successfully used
in the repeated executions of the cached queries.

Caching to Improve Performance

[284]

Refer to the following code snippet:

/*Cache result characteristics*/

SQL> SELECT *

 FROM V$RESULT_CACHE_STATISTICS

/

 ID NAME VALUE

---------- ------------------------------ -----------

 1 Block Size (Bytes) 1024

 2 Block Count Maximum 204800

 3 Block Count Current 32

 4 Result Size Maximum (Blocks) 40960

 5 Create Count Success 1

 6 Create Count Failure 0

 7 Find Count 0

 8 Invalidation Count 0

 9 Delete Count Invalid 0

 10 Delete Count Valid 0

 11 Hash Chain Length 1

11 rows selected.

Invalidation of SQL result cache
The result cached in the server cache gets invalidated if the dependent object gets
invalidated or the data in the dependent tables gets updated. The result is still
cached in the server cache but marked with the INVALID status.

First, we will generate a sample cache result at the server cache:

/*Connect as SYSDBA*/

CONN sys/system AS SYSDBA

Connected.

/*Flush the cache memory to clear the earlier cached results*/

EXEC DBMS_RESULT_CACHE.flush;

PL/SQL procedure successfully completed.

/*Flush the shared pool*/

SQL> alter system flush shared_pool

/

System altered.

/*Connect as ORADEV*/

Conn ORADEV/ORADEV

Connected.

Chapter 9

[285]

/*Generate explain plan for a Query with result cache hint*/

Explain plan for select /*+result_cache*/ * from employees

/

Explained.

/*Check the PLAN_TABLE output*/

SELECT * FROM TABLE (DBMS_XPLAN.DISPLAY)

/

Refer to the following screenshot for the output of the preceding code block:

Now, the server contains a cached result with the cache ID
7j5z4u9hzff4036czuj67bwqnt. Verify it in the following code snippet:

/*Connect as SYSDBA*/

CONN sys/system AS SYSDBA

Connected.

/*Query the result cached at the server*/

SELECT id, type, status, namespace, cache_id

FROM V$RESULT_CACHE_OBJECTS

WHERE creator_uid = (SELECT user_id

 FROM DBA_USERS

 WHERE username='ORADEV')

/

 ID TYPE STATUS NAMES CACHE_ID

---------- ---------- -------------- ----- ---------------------------

 3 Dependency Published ORADEV.EMPLOYEES

 4 Result Published SQL 7j5z4u9hzff4036czuj67bwqnt

Now, we will update the salary of the employees:

/*Connect to ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Update salary of employees in EMPLOYEES table*/

SQL> UPDATE employees

 SET sal = sal+100

Caching to Improve Performance

[286]

/

14 rows updated.

/*Commit the transaction*/

SQL> commit;

Commit complete.

When we query the cached result in V$RESULT_CACHE_OBJECTS, the earlier cached
results are found to be invalidated:

/*Connect as SYSDBA*/

Conn sys/system as sysdba

Connected.

/*Query the result cache objects view to check the INVALID status*/

SELECT id, type, status, namespace, cache_id

FROM V$RESULT_CACHE_OBJECTS

WHERE creator_uid = (SELECT user_id

 FROM DBA_USERS

 WHERE username='ORADEV')

/

Displaying the result cache memory report
The cache memory report can be generated from the DBMS_RESULT_CACHE package
using the MEMORY_REPORT procedure. The report displays the following details:

•	 A single block size

•	 Maximum cache memory available

•	 Maximum size of a cached result

•	 Used and unused portion of the cache memory

•	 Count of the cached results, invalidated results, and dependent objects

A sample cache memory report looks as follows:

/*Connect as SYSDBA*/

Conn sys/system as sysdba

Connected.

Chapter 9

[287]

/*Enable the serveroutput variable to display the block messages*/

SQL> SET SERVEROUTPUT ON

/*Generate the cache memory report*/

SQL> EXEC DBMS_RESULT_CACHE.MEMORY_REPORT

R e s u l t C a c h e M e m o r y R e p o r t

[Parameters]

Block Size = 1K bytes

Maximum Cache Size = 200M bytes (200K blocks)

Maximum Result Size = 40M bytes (40K blocks)

[Memory]

Total Memory = 134992 bytes [0.062% of the Shared Pool]

Fixed Memory = 9460 bytes [0.004% of the Shared Pool]

Dynamic Memory = 125532 bytes [0.058% of the Shared Pool]

Overhead = 92764 bytes

Cache Memory = 32K bytes (32 blocks)

Unused Memory = 30 blocks

Used Memory = 2 blocks

Dependencies = 1 blocks (1 count)

Results = 1 blocks

SQL = 1 blocks (1 count)

PL/SQL procedure successfully completed.

Read consistency of the SQL result cache
While the server searches the cached result of a query, the query must ensure read
consistency. The clauses given in the following list must hold true for the database to
use the cache:

•	 In a session, if the table (whose earlier query results are cached) is under
an uncommitted transaction, the database would not cache its results.
The queries using the table fetch the result from the server cache until the
transaction is committed and the cached result gets invalidated.

•	 For the query result to be reusable, the query must make use of lashback to
specify the timeframe.

Limitation of SQL result cache
The result of a SQL query will not be cached if the SQL includes dictionary
views, temporary tables, SYS-owned tables, sequences, pseudo columns (such as
CURRVAL, NEXTVAL, SYSDATE, LEVEL, ROWNUM and so on), or non-deterministic
PL/SQL functions.

Caching to Improve Performance

[288]

Implementing result cache in PL/SQL
Result caching in PL/SQL is second component of server-side caching in Oracle
11g. As we discussed briely in the irst section, results of frequently used PL/SQL
functions can be retained at the server cache. The PL/SQL result cache feature uses
the same infrastructure as the server result cache. When a function marked for result
cache is executed, its result is cached at the server cache along with the parameters.
The server picks up the result from the cache memory, if the same function is
executed with the same parameters. In this way, the server saves a handful of time
by bypassing the execution of the function body every time it is invoked, resulting
into enhanced performance. The function can be a standalone, packaged, or locally
declared (in a subprogram, not in anonymous PL/SQL block) one.

However, the cached result gets invalidated when the function or its referencing
tables undergo a structural change followed by recompilation. The cached result also
sets to the invalid state when the data in any of the referencing tables is updated.

As a common property of the server-side result cache, the cached result remains
available for all connected active sessions of the same database.

The RESULT_CACHE clause
The PL/SQL cache implementation and execution is similar to the RESULT_CACHE
hint in SQL. The same hint appears as a keyword in the PL/SQL function deinition.
A function whose results are to be cached must include the RESULT_CACHE clause in
its header. The clause asks the database to cache the results of the function with its
actual arguments. Syntax of the new function header looks as follows:

CREATE OR REPLACE FUNCTION [FUNCTION NAME]

RETURN [Return data type]

 RESULT_CACHE

 RELIES ON [TABLE NAME] (optional)

AS

BEGIN

…

…

END;

Chapter 9

[289]

The RELIES_ON clause was introduced in Oracle 11g Release 1. The clause was used
to specify the dependent table or view names, whose state would affect the status of
the cached result. The cached result would be invalidated if the data in these tables
or views undergo DML transaction. But later, the concept was found redundant
when databases were updated to take care of managing dependencies. Therefore,
the enhancement was withdrawn by Oracle in its subsequent 11g R2 release. The
removal of the RELIES_ON clause increased authenticity and capability of the server
cache by wiping out chances of error due to dependency.

Once the server has been conigured for caching, PL/SQL function results can be
readily cached. Check the following illustration:

/*Connect as SYSDBA*/
Conn sys/system as sysdba
Connected.

/*Flush the cache memory to clear the earlier cached results*/
SQL> EXEC dbms_result_cache.flush;

PL/SQL procedure successfully completed.

/*Flush the shared pool*/
SQL> alter system flush shared_pool
/

System altered.
/*connect as ORADEV*/
Conn ORADEV /ORADEV
Connected.

/*Set the SERVEROUTPUT parameter on to display the results*/
SQL> SET SERVEROUTPUT ON

/*Create a function F_GET_SAL*/
CREATE OR REPLACE FUNCTION f_get_sal (P_EMPNO NUMBER)
RETURN NUMBER
RESULT_CACHE
IS
 l_sal NUMBER;
BEGIN
 DBMS_OUTPUT.PUT_LINE(' Function Body execution');
 SELECT sal
 INTO L_SAL
 FROM employees
 WHERE empno=P_EMPNO;
 RETURN l_sal;
END;
/

Function created.

/*Declare a local variable and execute the function*/
SQL> VARIABLE m_sal NUMBER;

Caching to Improve Performance

[290]

SQL> EXEC :m_sal := f_get_sal (7900);
Function Body execution

PL/SQL procedure successfully completed.
SQL> PRINT m_sal
 M_SAL

 1050

As soon as the function is executed for an input argument, the server caches the
function result for this parameter. Let us now investigate the server cache memory
for the function result:

/*Connect as sysdba*/
Conn sys/system as sysdba
Connected.

/*Query the cached results*/
SELECT id,status,name, type, namespace
FROM v$result_cache_objects
WHERE creator_uid = (SELECT user_id
 FROM dba_users
 WHERE username='ORADEV')
/

Refer to the following screenshot for the output of the preceding code block:

The function result has been cached, along with the referenced object that is, the
EMPLOYEES table. Next time, if the function is invoked with the same parameter 7900,
the F_GET_SAL function would not be executed. In the following repeated execution
of F_GET_SAL, note that the display message function body execution has not been
printed. It is because the function result has been picked up from the server cache:

/*connect as ORADEV*/
Conn ORADEV /ORADEV

/*Enable the serveroutput variable to display the block messages*/
SQL> SET SERVEROUTPUT ON

/*Declare a bind variable to capture the function execution results*/
SQL> VARIABLE m_sal NUMBER;
SQL> EXEC :m_sal := f_get_sal (7900);

PL/SQL procedure successfully completed.
SQL> PRINT m_sal
 M_SAL

 1050

Chapter 9

[291]

For the parameter values different from the 7900, server executes the F_GET_SAL
function, returns and caches the result at the server. In the following function call
for the argument 7844, note that the display message from dbms_output has been
printed. This implies that the function body has been executed once:

/*Enable the serveroutput variable to display the block messages*/

SQL> SET SERVEROUTPUT ON

/*Declare a bind variable to capture the function execution results*/

SQL> variable m_other_sal number;

SQL> EXEC :m_other_sal := f_get_sal (7844);

Function Body execution

PL/SQL procedure successfully completed.

/*Print the results*/

SQL> PRINT m_other_sal;

M_OTHER_SAL

 1600

The result from the above function execution for employee, if 7844 is cached and its
information can be queried in the V$RESULT_CACHE_OBJECTS view, is as follows:

/*Connect to SYSDBA*/

Conn sys/system as sysdba

Connected.

/*Check the cached results*/

SELECT id, status, type, cache_id

FROM v$result_cache_objects

ORDER BY id

/

 ID STATUS TYPE CACHE_ID

--- --------- ---------- ----------------------------------

 0 Published Dependency ORADEV.F_GET_SAL

 1 Published Result 97wusxcnc35b3053yrt02j5qc7

 2 Published Dependency ORADEV.EMPLOYEES

 3 Published Result 97wusxcnc35b3053yrt02j5qc7

The PL/SQL caching metadata is stored in the same way as it is done in the SQL
result caching. The same type (Result and Dependency) and status (New, Published,
Invalid, Expired, or Bypass) appear when querying the cached result information
in V$RESULT_CACHE_OBJECTS. The dependent object information can be queried from
V$RESULT_CACHE_DEPENDENCY. Once the function result is cached at the server, the
counts in V$RESULT_CACHE_STATISTICS would get updated automatically.

Caching to Improve Performance

[292]

Now, let us generate the cache memory report to verify the PL/SQL cache result
entries. In the report, note the PL/SQL result's counts, which are cached under
used memory:

/*Connect to SYSDBA*/

Conn sys/system as sysdba

Connected.

/*Enable the serveroutput variable to display the block messages*/

SQL> SET SERVEROUTPUT ON

SQL> exec dbms_result_cache.memory_report

R e s u l t C a c h e M e m o r y R e p o r t

[Parameters]

Block Size = 1K bytes

Maximum Cache Size = 200M bytes (200K blocks)

Maximum Result Size = 100M bytes (100K blocks)

[Memory]

Total Memory = 140616 bytes [0.064% of the Shared Pool]

Fixed Memory = 9460 bytes [0.004% of the Shared Pool]

Dynamic Memory = 131156 bytes [0.060% of the Shared Pool]

Overhead = 98388 bytes

Cache Memory = 32K bytes (32 blocks)

Unused Memory = 28 blocks

Used Memory = 4 blocks

Dependencies = 2 blocks (2 count)

Results = 2 blocks

PLSQL = 2 blocks (2 count)

PL/SQL procedure successfully completed.

Cross-session availability of cached results
Once again, by virtue of common features of the server-side cache, the function results
cached in one session would be accessible in all the sessions. The reason for this is the
function result which is cached in the SGA and SGA is available for all the sessions.

To be noted, PL/SQL function result caching works only if the formal parameters are
passed by reference. This is one of the limitation of the result cache feature in PL/SQL.

Invalidation of PL/SQL result cache
The function result cache gets invalidated if the function or its referencing table
undergo a DDL change (alter, modify, or recompilation). In addition, even if the
data contained in any of the referencing table gets updated, the server purges the
cached result.

Chapter 9

[293]

Currently, we have two published cache results from the last demonstration:

/*Connect to DBA*/

Conn sys/system as sysdba

Connected.

/*Query the cached results*/

SELECT id, status, type, cache_id

FROM v$result_cache_objects

ORDER BY id

/

 ID STATUS TYPE CACHE_ID

--- --------- ---------- ----------------------------------

 0 Published Dependency ORADEV.F_GET_SAL

 1 Published Result 97wusxcnc35b3053yrt02j5qc7

 2 Published Dependency ORADEV.EMPLOYEES

 3 Published Result 97wusxcnc35b3053yrt02j5qc7

This time, without lushing the results, we will recompile the function to observe the
effect on the cached results:

/*Connect to the ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Compile the function*/

ALTER FUNCTION F_GET_SAL COMPILE

/

Function altered.

Now, when we check the cache object information in V$RESULT_CACHE_OBJECTS, the
Published results will be invalidated:

/*Connect to SYSDBA*/

Conn sys/system as sysdba

Connected.

/*Query the cached results*/

SELECT id, status, type, cache_id

FROM v$result_cache_objects

ORDER BY id

/

 ID STATUS TYPE CACHE_ID

--- --------- ---------- -----------------------------------

 0 Published Dependency ORADEV.F_GET_SAL

 1 Invalid Result 97wusxcnc35b3053yrt02j5qc7

 2 Published Dependency ORADEV.EMPLOYEES

 3 Invalid Result 97wusxcnc35b3053yrt02j5qc7

Caching to Improve Performance

[294]

The observation deduces that the cached result is highly sensitive to the changes
occurring on the objects with which it shares direct and indirect dependencies.

Limitations of PL/SQL function result cache
The eficiencies and accomplishments of the server result cache are beyond doubts.
However, in some exceptional cases the caching feature is automatically ignored
by the database server. We will discuss certain limitations of the result caching
feature in Oracle.

Argument and return type restrictions
The argument and return type limitations are as follows:

•	 Functions with pass by value parameters (OUT or IN OUT)

•	 Functions with CLOB, NCLOB, or BLOB arguments

•	 Functions with arguments of a user-deined object or collection type
•	 Function return type is LOB

Function structural restrictions
The function structural limitations are as follows:

•	 Functions which are created with its invoker's rights.

•	 The function declared locally in an anonymous PL/SQL block. Oracle raises
the following PLS-00999 exception:

PLS-00999: implementation restriction (may be temporary) RESULT_
CACHE is disallowed on subprograms in anonymous blocks

It appears as a temporary restriction and might be seen in the forthcoming
releases. However, a function declared locally in a subprogram (procedure or
function) can still be stored in the server cache.

•	 Pipelined table functions

Chapter 9

[295]

Summary
In this chapter, we learned how server result caching can dramatically improve
performance in SQL and PL/SQL applications. We understood the database
coniguration required to enable the caching feature at the server. We learned the
SQL result caching and PL/SQL function result caching through demonstrations.

In the next chapter, we will learn the PL/SQL analysis steps and techniques.

Practice exercise
1. The initialization parameter settings for your database are as follows:

MEMORY_TARGET = 500M

RESULT_CACHE_MODE = MANUAL

RESULT_CACHE_MAX_SIZE = 0

You execute a query by using the RESULT_CACHE hint. Which statement is
true in this scenario?

a. The query results are not stored in the cache because no memory is
allocated for the result cache.

b. The query results are stored in the cache because Oracle implicitly
manages the cache memory.

c. The query results are not stored in the cache because RESULT_CACHE_MODE
is MANUAL.

d. The query results are stored in the cache automatically when
RESULT_CACHE_MODE is MANUAL.

2. You set the following initialization parameter settings for your database:

MEMORY_TARGET = 500M

RESULT_CACHE_MODE = FORCE

RESULT_CACHE_MAX_SIZE = 200M

You execute the following query:

SELECT /*+RESULT_CACHE*/ ENAME, DEPTNO

FROM EMPLOYEES

WHERE EMPNO = 7844

/

Caching to Improve Performance

[296]

Which of the following statements are true?

a. The query results are cached because the SQL uses the RESULT_CACHE hint.

b. The query results are cached because the result cache mode is FORCE.

c. The query results are not cached because the SQL uses the
RESULT_CACHE hint.

d. The RESULT_CACHE hint is ignored when result cache mode is FORCE.

3. The cached query result becomes invalid when the data accessed by the
query gets modiied.
a. True

b. False

4. The SQL query result cache is persistent only for the current session.

a. True

b. False

5. Which of the following PL/SQL objects' results cannot be cached?

a. Standalone function

b. Procedure

c. A function local to a procedure

d. Packaged function

6. The RELIES_ON clause in the PL/SQL function result cache can be used
to specify the dependent tables or views whose state would affect the
cached result.

a. True

b. False

7. Server settings are as follows:

MEMORY_TARGET = 500M

RESULT_CACHE_MODE = FORCE

RESULT_CACHE_MAX_SIZE = 200M

Identify the SQL queries whose results cannot be cached by the server.

a. SELECT ename, sal FROM employees WHERE empno = 7900;

b. SELECT seq_empid.nextval FROM DUAL;

c. SELECT ename, sysdate, hiredate FROM employees;

d. SELECT dname, loc FROM departments WHERE deptno = 10;

Chapter 9

[297]

8. Identify the correct statements about the PL/SQL function result cache.

a. PL/SQL function result cache requires additional server coniguration.
b. PL/SQL function result cache cannot be operated on procedures.

c. PL/SQL function result cache works with all categories of functions.

d. PL/SQL function cache features can work with the function which take
collection type arguments.

9. Identify the admissible value of the STATUS column in
V$RESULT_CACHE_OBJECTS.

a. PUBLISHED

b. INVALID

c. USED

d. UNUSED

10. Choose the correct statement about the following sample cache memory
statistics report:

 ID NAME VALUE

-------- ------------------------------ -------

 1 Block Size (Bytes) 1024

 2 Block Count Maximum 204800

 3 Block Count Current 32

 4 Result Size Maximum (Blocks) 40960

 5 Create Count Success 1

 6 Create Count Failure 0

 7 Find Count 0

 8 Invalidation Count 0

 9 Delete Count Invalid 0

 10 Delete Count Valid 0

 11 Hash Chain Length 1

a. Create Count Success is the count of successfully cached results.

b. Find Count is the count of the successfully cached results found and
used in the queries.

c. Invalidation Count is the count of the invalidated cached results.

d. Block Count Maximum is the static value of total blocks available in the
cache memory.

Analyzing PL/SQL Code
Code writing and tuning is the irst stage of application life cycle development. As
this life cycle matures and grows, the maintenance of code base becomes mandatory
for code analysis and forecasts. The code management strategy aims at code testing,
tracing, proiling, and reporting the coding information. This chapter covers some
recommended techniques to analyze PL/SQL code through Oracle-supplied
resources such as data dictionary views, initialization parameters, and built-in
packages. Within the scope of the chapter, we will cover the following topics:

•	 Tracing and generating reports on PL/SQL source code

•	 Reporting usage of identiiers in PL/SQL source code
•	 Extracting schema object deinitions using DBMS_METADATA

Track coding information
Once the development stage of the code base is over, it might be required to
track through the code for search operation or to extract some crucial information
for analysis or maintenance purposes. Such scenarios do not require thorough
line-by-line digging as might seem to be the case. The line-by-line or code-by-code
approach not only eats up a lot of time and resource but also ends up in a huge
effort with tiny result. For this reason, Oracle supplies a set of dictionary views
which make the life of analysts easy. The Oracle-supplied dictionary views are
proven metadata sources of Oracle to provide accurate and detailed end results. The
dictionary views used for tracking PL/SQL code information are ALL_ARGUMENTS,
ALL_OBJECTS, ALL_SOURCE, ALL_PROCEDURES, and ALL_DEPENDENCIES.

Analyzing PL/SQL Code

[300]

The following diagram lists the dictionary views along with a brief description. Note
that only ALL_* views are listed in the chart but, nevertheless, the same purpose is
achieved by the other [USER | DBA] lavors too:

ALL_ARGUMENTS

ALL_OBJECTS

ALL_SOURCE

ALL_PROCEDURES

ALL_DEPENDENCIES

Stores information about member subprograms

and its arguments for a PL/SQL subprogram

Stores the objects created in the database

Stores the source code of the compilation and

stores program units in a schema

Stores the package, procedure, and function

information

Stores the dependencies of an object

When a schema object is compiled and created in the database, SYS-owned tables
capture the relevant information about the PL/SQL object. Dictionary views are
built on top of the SYS-owned tables to present the information in a meaningful
way. These views exist in the following three lavors:

•	 USER: Contains metadata of the objects whose owner is the current user

•	 ALL: Contains metadata of the objects accessible by the current user

•	 DBA: Contains metadata of all objects

Dictionary views are accessed by preixing their scope with the name. It is
not mandatory that a view must exist in all three lavors. For example, the
DBA_GLOBAL_CONTEXT view exists, but the USER_GLOBAL_CONTEXT and
ALL_GLOBAL_CONTEXT views do not exist.

All dictionary views along with their description can be queried
from an Oracle-supplied view DICTIONARY.

Chapter 10

[301]

Let us create a small procedure and a function to understand how the preceding
dictionary views present meaningful metadata information. The P_PRINT_NAME
procedure accepts a parameter and prints it in uppercase. A similar result is
achieved by the F_GET_NAME function too:

/*Connect to ORADEV user*/

SQL> conn ORADEV/ORADEV

Connected.

/*Enable the serveroutput to display the error messages*/

SQL> SET SERVEROUTPUT ON

/*Create the procedure*/

SQL> CREATE OR REPLACE PROCEDURE p_print_name (p_name VARCHAR2)

 IS

 l_name VARCHAR2(255);

 BEGIN

/*Convert the input string case to upper*/

 l_name := UPPER(p_name);

/*Print the input string in upper case*/

 DBMS_OUTPUT.PUT_LINE(l_name);

 END;

/

Procedure created.

/*Create the function*/

SQL> create or replace function f_print_name (p_name varchar2)

 return VARCHAR2

 IS

 begin

/*Return the string in upper case*/

 return UPPER(p_name);

 END;

/

Function created.

[DBA | ALL | USER]_ARGUMENTS
Now, let us query each of the dictionary views to check the information collected
by them. We will start with the USER_ARGUMENTS view. The view contains object
properties such as the object ID, its name, its parent package name (if any), and
argument information such as arguments of the subprogram, its sequence, data
type, and parameter passing mode.

Analyzing PL/SQL Code

[302]

The structure of the view is as follows:

/*Print the structure of USER_ARGUMENTS*/

SQL> DESC USER_ARGUMENTS

 Name Null? Type

 ----------------------- -------- ----------------

 OBJECT_NAME VARCHAR2(30)

 PACKAGE_NAME VARCHAR2(30)

 OBJECT_ID NOT NULL NUMBER

 OVERLOAD VARCHAR2(40)

 SUBPROGRAM_ID NUMBER

 ARGUMENT_NAME VARCHAR2(30)

 POSITION NOT NULL NUMBER

 SEQUENCE NOT NULL NUMBER

 DATA_LEVEL NOT NULL NUMBER

 DATA_TYPE VARCHAR2(30)

 DEFAULTED VARCHAR2(1)

 DEFAULT_VALUE LONG

 DEFAULT_LENGTH NUMBER

 IN_OUT VARCHAR2(9)

 DATA_LENGTH NUMBER

 DATA_PRECISION NUMBER

 DATA_SCALE NUMBER

 RADIX NUMBER

 CHARACTER_SET_NAME VARCHAR2(44)

 TYPE_OWNER VARCHAR2(30)

 TYPE_NAME VARCHAR2(30)

 TYPE_SUBNAME VARCHAR2(30)

 TYPE_LINK VARCHAR2(128)

 PLS_TYPE VARCHAR2(30)

 CHAR_LENGTH NUMBER

 CHAR_USED VARCHAR2(1)

The view columns can be described with comments using the DICT_COLUMNS
dictionary view:

/*Query the view columns*/

SELECT column_name, comments

FROM dict_columns

WHERE table_name='USER_ARGUMENTS'

/

Chapter 10

[303]

Refer to the following screenshot for the output:

The ARGUMENT_NAME view column denotes the actual argument name as given in
the program header (DATA_LEVEL = 0). If it is NULL, it signiies the return type of the
function to be in OUT mode (DATA_LEVEL = 0). For DATA_LEVEL > 0, the argument is
of object type or composite data type.

The USER_ARGUMENTS view contains only the argument name,
type, passing mode, and default value. However, the view does
not maintain any information about the NOCOPY hint, if used with
the OUT or IN OUT arguments.

The argument contained in the P_PRINT_NAME procedure and the F_PRINT_NAME
function can be queried from the view as shown in the following code snippet.
Observe the record entry with the NULL argument name which denotes the return
type of the function:

/*Query the arugment for the procedure P_PRINT_NAME*/

SELECT object_name, subprogram_id,argument_name, data_type, in_out

FROM user_arguments

WHERE object_name IN ('P_PRINT_NAME','F_PRINT_NAME')

/

Analyzing PL/SQL Code

[304]

 OBJECT_NAME SUBPROGRAM_ID ARGUMENT DATA_TYPE IN_OUT

--------------- ------------- -------- --------------- ---------

 F_PRINT_NAME 1 P_NAME VARCHAR2 IN

 F_PRINT_NAME 1 VARCHAR2 OUT

 P_PRINT_NAME 1 P_NAME VARCHAR2 IN

[DBA | ALL | USER]_OBJECTS
The USER_OBJECTS view simply stores the metadata information of the schema
objects. Apart from storing basic information such as the object ID, name, or
creation timestamp, it collects the information about the object type, status, and
namespace details.

The structure of the dictionary view looks as shown in the following code snippet:

/*Display the structure of USER_OBJECTS*/

SQL> DESC USER_OBJECTS

 Name Null? Type

 ----------------------- -------- ----------------

 OBJECT_NAME VARCHAR2(128)

 SUBOBJECT_NAME VARCHAR2(30)

 OBJECT_ID NUMBER

 DATA_OBJECT_ID NUMBER

 OBJECT_TYPE VARCHAR2(19)

 CREATED DATE

 LAST_DDL_TIME DATE

 TIMESTAMP VARCHAR2(19)

 STATUS VARCHAR2(7)

 TEMPORARY VARCHAR2(1)

 GENERATED VARCHAR2(1)

 SECONDARY VARCHAR2(1)

 NAMESPACE NUMBER

 EDITION_NAME VARCHAR2(30)

The view columns with comments can be queried from the DICT_COLUMNS view:

/*Query the view columns*/

SELECT column_name, comments

FROM dict_columns

WHERE table_name='USER_OBJECTS'

/

Chapter 10

[305]

Refer to the following screenshot for the output:

In the preceding USER_OBJECTS view structure, it is important to understand the
behavior of the date type columns—CREATED, LAST_DDL_TIME and TIMESTAMP.
The CREATED column stores the ixed value as the date when the object was created
for the irst time. The LAST_DDL_TIME column stores the date when the object was
recompiled last time. The TIMESTAMP column stores the date when the source code of
the object was modiied. If the object is recompiled, only the LAST_DDL_TIME column
gets updated. But if the source code of the object undergoes a modiication, both
TIMESTAMP and LAST_DDL_TIME get updated.

The EDITION_NAME column stores the actual edition name of the object. Editions
are non-schema objects which are used to maintain versions of schema objects.
A new edition inherits all objects from the latest edition. Oracle 11g R2 brings in
a mandatory default edition ORA$BASE for all databases. Further reading can be
continued at Oracle documentation (http://docs.oracle.com/cd/E11882_01/
appdev.112/e10471/adfns_editions.htm).

The object properties of the P_PRINT_NAME procedure, as schema objects, can be
retrieved as follows:

/Query the object properties of P_PRINT_NAME*/

SELECT object_id, object_type, status,namespace

FROM user_objects

WHERE object_name='P_PRINT_NAME'

/

 OBJECT_ID OBJECT_TYPE STATUS NAMESPACE

---------- ------------------- ------- ----------

 81410 PROCEDURE VALID 1

Analyzing PL/SQL Code

[306]

[DBA | ALL | USER]_SOURCE
The USER_SOURCE dictionary view should give you the complete source code for
the object which you request. Here is the structure of the view:

/*Display the structure of USER_SOURCE*/

SQL> DESC USER_SOURCE

 Name Null? Type

 ----------------------- -------- ---------

 NAME VARCHAR2(30)

 TYPE VARCHAR2(12)

 LINE NUMBER

 TEXT VARCHAR2(4000)

The columns of the USER_SOURCE view, along with their comments, can be queried
from the DICT_COLUMNS view:

/*Query the view columns*/

SELECT column_name, comments

FROM dict_columns

WHERE table_name='USER_SOURCE'

/

The source code of the P_PRINT_NAME program unit can be queried as follows:

/*Query the source code of P_PRINT_NAME*/

SELECT *

FROM user_SOURCE

WHERE name='P_PRINT_NAME'

/

Chapter 10

[307]

[DBA | ALL | USER]_PROCEDURES
The USER_PROCEDURES dictionary view stores the subprogram properties of
an object. Unlike its name, it stores the details for a procedure, function, or
packages contained in the database schema. The structure of the dictionary
view looks as follows:

/*Display the structure of USER_PROCEDURES*/

SQL> DESC USER_PROCEDURES

 Name Null? Type

 ----------------------- -------- --------------

 OBJECT_NAME VARCHAR2(128)

 PROCEDURE_NAME VARCHAR2(30)

 OBJECT_ID NUMBER

 SUBPROGRAM_ID NUMBER

 OVERLOAD VARCHAR2(40)

 OBJECT_TYPE VARCHAR2(19)

 AGGREGATE VARCHAR2(3)

 PIPELINED VARCHAR2(3)

 IMPLTYPEOWNER VARCHAR2(30)

 IMPLTYPENAME VARCHAR2(30)

 PARALLEL VARCHAR2(3)

 INTERFACE VARCHAR2(3)

 DETERMINISTIC VARCHAR2(3)

 AUTHID VARCHAR2(12)

The columns of the USER_PROCEDURES view can be queried from the
DICT_COLUMNS view:

/*Query the view columns*/

SELECT column_name, comments

FROM dict_columns

WHERE table_name='USER_PROCEDURES'

/

COLUMN_NAME COMMENTS

------------------ --

OBJECT_NAME Name of the object: top level
 function/procedure/package/type/trigger name

PROCEDURE_NAME Name of the package or type subprogram

OBJECT_ID Object number of the object

SUBPROGRAM_ID Unique sub-program identifier

OVERLOAD Overload unique identifier

OBJECT_TYPE The typename of the object

Analyzing PL/SQL Code

[308]

AGGREGATE Is it an aggregate function ?

PIPELINED Is it a pipelined table function ?

IMPLTYPEOWNER Name of the owner of the implementation type (if
any)

IMPLTYPENAME Name of the implementation type (if any)

PARALLEL Is the procedure parallel enabled ?

INTERFACE

DETERMINISTIC

AUTHID

14 rows selected.

From the above column description, it is important to understand a few columns
such as IMPLTYPEOWNER, IMPLTYPENAME, and AUTHID. Implementation type and
owner values interpret any object type association of the program. The AUTHID
column shows the authorization holder during invocation—possible values can be
DEFINER, if the program has to be invoked by its owner's rights, and CURRENT_USER,
if the program has to be invoked by its invoker.

The procedural properties of the P_PRINT_NAME subprogram can be queried from the
view as follows:

/*Query the subprogram properties of P_PRINT_NAME*/

select object_id,object_type, overload, authid

FROM user_procedures

WHERE object_name='P_PRINT_NAME'

/

 OBJECT_ID OBJECT_TYPE OVERLOAD AUTHID

---------- ------------------- ---------- ---------

 81410 PROCEDURE DEFINER

[DBA | ALL | USER]_DEPENDENCIES
The USER_DEPENDENCIES dictionary view reveals very important information about
the dependencies shared by the object. In many cases, the dependency shared by an
object is decisive over its validity status. The view contains the details of the objects
which are referenced within the deinition of a particular object:

/*Display the structure of USER_DEPENDENCIES*/

SQL> DESC USER_DEPENDENCIES

 Name Null? Type

 ------------------------ -------- -------------

 NAME NOT NULL VARCHAR2(30)

 TYPE VARCHAR2(18)

Chapter 10

[309]

 REFERENCED_OWNER VARCHAR2(30)

 REFERENCED_NAME VARCHAR2(64)

 REFERENCED_TYPE VARCHAR2(18)

 REFERENCED_LINK_NAME VARCHAR2(128)

 SCHEMAID NUMBER

 DEPENDENCY_TYPE VARCHAR2(4)

The columns of the preceding view structure can be explained from the
DICT_COLUMNS view:

/*The view columns with comments*/

SELECT column_name, comments

FROM dict_columns

WHERE table_name='USER_DEPENDENCIES'

/

Refer to the following screenshot for the output:

The dependency shared by the P_PRINT_NAME procedure can be queried as per the
following query:

/*Query the dependent objects of P_PRINT_NAME*/

select type, referenced_owner, referenced_name, referenced_type

FROM user_dependencies

WHERE name='P_PRINT_NAME'

/

Analyzing PL/SQL Code

[310]

Using SQL Developer to ind
coding information
The object metadata information retrieved from the dictionary views is a
conventional way to track code information. But these days, the IDE have been
made self-suficient to generate some vital predeined reports. The metadata
information demonstrated in the last section using dictionary views can also be
generated from SQL Developer. SQL Developer is a free UI based interactive IDE
tool which boards multiple database utilities.

Here, we will demonstrate the tracking of code through SQL Developer:

1. Go to View | Reports:

2. Go to All Reports | Data Dictionary Reports | PLSQL:

	° Under PLSQL, you ind three options. These options are analogous
to the dictionary views which we queried in the preceding section.

	° The Program Unit Arguments option queries the USER_ARGUMENTS
dictionary view. The Search Source Code and Unit Line Counts
options query the USER_SOURCE view.

Chapter 10

[311]

	° When you click on any of the options for the irst time, the following
dialog box pops up. There you can select the connection, if you have
multiple connections in your connect list:

3. Once the connection is selected from the drop-down list, another dialog box
appears and prompts for user inputs:

	° For Program Unit Arguments, the dialog asks for Package or
Program Unit Name.

	° For Search Source Code, the dialog box asks for PL/SQL Object
Name or Text Search.

	° For Unit Line Counts, there is no dialog box, as it generates the line
count report for all the schema objects:

Analyzing PL/SQL Code

[312]

4. We can demonstrate Search Source Code by providing P_PRINT_NAME
as input:

5. Click on Apply to generate the source code report:

6. Demonstrate the generation of argument report from Program
Unit Arguments:

Chapter 10

[313]

7. Click on the Apply button to generate the argument report for the given
program unit:

The DBMS_DESCRIBE package
The DBMS_DESCRIBE package is an Oracle built-in package which is used to gather
information about the Oracle PL/SQL object—making it an essential Oracle data
access component. It is owned by the SYS user, and all other users hitting the server,
access its public synonym.

It contains only one subprogram that, is DESCRIBE_PROCEDURE.

The structure of the DESCRIBE_PROCEDURE subprogram is as follows:

DBMS_DESCRIBE.DESCRIBE_PROCEDURE(

 object_name IN VARCHAR2,

 reserved1 IN VARCHAR2,

 reserved2 IN VARCHAR2,

 overload OUT NUMBER_TABLE,

 position OUT NUMBER_TABLE,

 level OUT NUMBER_TABLE,

 argument_name OUT VARCHAR2_TABLE,

 datatype OUT NUMBER_TABLE,

 default_value OUT NUMBER_TABLE,

 in_out OUT NUMBER_TABLE,

 length OUT NUMBER_TABLE,

 precision OUT NUMBER_TABLE,

 scale OUT NUMBER_TABLE,

 radix OUT NUMBER_TABLE,

 spare OUT NUMBER_TABLE

 include_string_constraints OUT BOOLEAN DEFAULT FALSE);

Analyzing PL/SQL Code

[314]

The DBMS_DESCRIBE procedure can extract the following information for a
given procedure:

Note that the procedure accepts three IN mode parameters, one OUT parameter, and
12 OUT parameters of associative array type.

Two reserved parameters are the Reserved parameters and must be kept NULL.
The remaining parameters are the OUT parameters of the Associative array type
whose deinition is as follows:

TYPE VARCHAR2_TABLE IS TABLE OF VARCHAR2(30)

 INDEX BY BINARY_INTEGER;

TYPE NUMBER_TABLE IS TABLE OF NUMBER

 INDEX BY BINARY_INTEGER;

For the P_PRINT_NAME procedure, the DBMS_DESCRIBE package works as follows:

/*Connect to ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Enable the serveroutput to display the error messages*/

SET SERVEROUTPUT ON

DECLARE

/*Declare the local variable of DBMS_DESCRIBE associative array type*/

 v_overload DBMS_DESCRIBE.NUMBER_TABLE;

 v_position DBMS_DESCRIBE.NUMBER_TABLE;

 v_level DBMS_DESCRIBE.NUMBER_TABLE;

 v_arg_name DBMS_DESCRIBE.VARCHAR2_TABLE;

Chapter 10

[315]

 v_datatype DBMS_DESCRIBE.NUMBER_TABLE;

 v_def_value DBMS_DESCRIBE.NUMBER_TABLE;

 v_in_out DBMS_DESCRIBE.NUMBER_TABLE;

 v_length DBMS_DESCRIBE.NUMBER_TABLE;

 v_precision DBMS_DESCRIBE.NUMBER_TABLE;

 v_scale DBMS_DESCRIBE.NUMBER_TABLE;

 v_radix DBMS_DESCRIBE.NUMBER_TABLE;

 v_spare DBMS_DESCRIBE.NUMBER_TABLE;

 BEGIN

/*Call the procedure DESCRIBE_PROCEDURE for P_PRINT_NAME*/

 DBMS_DESCRIBE.DESCRIBE_PROCEDURE

 (

 'P_PRINT_NAME',

 null, null,

 v_overload,

 v_position,

 v_level,

 v_arg_name,

 v_datatype,

 v_def_value,

 v_in_out,

 v_length,

 v_precision,

 v_scale,

 v_radix,

 v_spare,

 null

);

/*Iterate the argument array V_ARG_NAME to list the argument details
of the object*/

 FOR i IN v_arg_name.FIRST .. v_arg_name.LAST

 LOOP

/*Check if the position if zero or not*/

 IF v_position(i) = 0 THEN

/*Zero position is reserved for RETURN types*/

 DBMS_OUTPUT.PUT('This is the RETURN data for the function: ');

 DBMS_OUTPUT.NEW_LINE;

 ELSE

/*Print the argument name*/

 DBMS_OUTPUT.PUT ('The argument name is: '||v_arg_name(i));

 DBMS_OUTPUT.NEW_LINE;

 END IF;

/*Display the position, type and mode of parameters*/

Analyzing PL/SQL Code

[316]

 DBMS_OUTPUT.PUT_LINE('The argument position is:'||v_
position(i));

 DBMS_OUTPUT.NEW_LINE;

 DBMS_OUTPUT.PUT_LINE('The argument datatype is:'||v_
datatype(i));

 DBMS_OUTPUT.NEW_LINE;

 DBMS_OUTPUT.PUT_LINE('The argument mode is:'||v_in_out(i));

 DBMS_OUTPUT.NEW_LINE;

 END LOOP;

 END;

/

The argument name is: P_NAME

The argument position is:1

The argument datatype is:1

The argument mode is:0

PL/SQL procedure successfully completed.

DBMS_UTILITY.FORMAT_CALL_STACK
We often encounter scenarios where subprogram calls have been extensively
branched and nested among themselves. A subprogram can be called from multiple
program units and it might be required to trace the complete invocation path.

The FORMAT_CALL_STACK function of the DBMS_UTILITY package is used to
extract the current call stack as a formatted text string. The call stack contains the
information about the sequential calls made from a program to another program.
Every call, in the stack, is stored by the line number of the subprogram invocation.

Suppose a procedure P3 calls another procedure P2. P2 makes a call to another stored
subprogram P1. Now, in P1, a call trace report can be embedded to see the call path:

/*Create the procedure P1*/

CREATE OR REPLACE PROCEDURE P1

IS

BEGIN

 dbms_output.put_line(substr(dbms_utility.format_call_Stack, 1,
255));

END;

/

Procedure created.

/*Create the procedure P2*/

CREATE OR REPLACE PROCEDURE P2

Chapter 10

[317]

IS

BEGIN

/*Call procedure P1*/

 P1;

END;

/

Procedure created.

/*Create the procedure P3*/

CREATE OR REPLACE PROCEDURE P3

IS

BEGIN

/*Call procedure P2*/

 P2;

END;

/

Procedure created.

/*Enable the serveroutput to display the error messages*/

SET SERVEROUTPUT ON

/*Start a PL/SQL block to invoke P3*/

BEGIN

/*Call P3*/

 P3;

END;

/

----- PL/SQL Call Stack -----

 object line object

 handle number name

23D06844 4 procedure ORADEV.P1

23CEAD38 4 procedure ORADEV.P2

23EDCB38 4 procedure ORADEV.P3

23CF00CC 2 anonymous block

PL/SQL procedure successfully completed.

In the above output, the call stack shows the calls traversing from the anonymous
block to procedure P1. Starting from the last, an anonymous block calls P3, which
calls P2, and reaches P1. The call stack would appear different for different paths
used to reach P1. If another procedure P4 calls P2, and hence P1, the call stack would
show P4 in place of P3.

Analyzing PL/SQL Code

[318]

Tracking propagating exceptions in

PL/SQL code
We are well versed in and aware of the propagation behavior of exceptions in
PL/SQL. But locating the exact position from where the exception got raised has
always been a cumbersome job for developers. After the failure of SQLERRM to
truncate the error messages after 512 characters, FORMAT_ERROR_STACK is used
to serve this purpose to some extent by presenting complete error messages up
to 2000 characters, without truncation.

Oracle 10g Release 1 provides an error handling function under the DBMS_UTILITY
package known as FORMAT_ERROR_BACKTRACE, to handle scenarios of exception
propagation. The function produces a formatted string containing the stack of
program unit information with line numbers. It helps developers to locate the exact
program unit which has raised the exception.

Let us conduct a small case study where we will explicitly raise the exception in one
program and try to access the same from another PL/SQL block.

The P_TRACE procedure declares a local exception and rises from the
executable section:

/*Connect to ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Create procedure P_TRACE*/

CREATE OR REPLACE PROCEDURE p_trace

IS

/*Declare a local user defined exception*/

 xlocal EXCEPTION;

BEGIN

/*Raise the local exception*/

 RAISE xlocal;

END;

/

Procedure created.

First, we will present the situation prior to the introduction of FORMAT_ERROR_
BACKTRACE in Oracle 10g:

/*Call P_TRACE in a PL/SQL anonymous block*/

BEGIN

 P_TRACE;

EXCEPTION

WHEN OTHERS then

Chapter 10

[319]

/*Display the error message using SQLERRM*/

 DBMS_OUTPUT.PUT_LINE(sqlerrm);

END;

/

User-Defined Exception

PL/SQL procedure successfully completed.

Note that the block output does not clearly specify the defaulter program unit which
caused the exception propagation. It is because SQLERRM logs only the last exception
to occur.

Now, we will modify the same anonymous PL/SQL block and include FORMAT_
ERROR_BACKTRACE to log the program unit which raises the exception:

/*Create the PL/SQL anonymous block*/

SQL> BEGIN

 P_TRACE;

 EXCEPTION

 WHEN OTHERS then

/*Print the error stack using FORMAT_ERROR_BACKTRACE*/

 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);

 END;

/

ORA-06512: at "ORADEV.P_TRACE", line 5

ORA-06512: at line 2

The output given by FORMAT_ERROR_BACKTRACE shows the name of the P_TRACE
program unit along with the line number (5, in this case) which raises the exception.
This error stack information expands as the nesting of calls increases. It helps to
trace, debug, and log the correct information of the ongoing database activities and
take appropriate action.

Determining identiier types and usages
All the local declarations of a program unit are categorized as identiiers. An
identiier's declaration locates a memory on the server and keeps it busy until
the program unit is executed or terminated. Redundant identiiers must be
recognized within a program so as to restrict them from holding a chunk of
memory for no operation.

Oracle provides a tool known as PL/Scope to monitor the activities of identiiers in a
program. It is one of the new features in Oracle 11g.

Analyzing PL/SQL Code

[320]

The PL/Scope tool
The PL/Scope tool compiles and captures the information of the identiiers
declared and used in a program. Once the feature is enabled, the language
compiler ilters out the identiier's information and stores it in a dictionary
view called USER_IDENTIFIERS. An identiier is recognized by its name, type,
and usage.

Let us examine some of the key features of the PL/Scope tool:

•	 Only unwrapped program units can use the PL/Scope tool.

•	 The feature can be enabled by setting a new initialization parameter
called PLSCOPE_SETTINGS.

•	 The compiler stages the identiiers' information only in the SYSAUX
tablespace. The feature remains deactivated if the SYSAUX tablespace
is unavailable.

•	 The identiier information can be viewed in
[DBA | ALL | USER]_IDENTIFIERS.

•	 The feature can be enabled for the whole database, for a session, or only
for an object. It implies that a program can be compiled with different
compilation parameters from the current session or database settings.
The object level speciication overrides the session or system level setting
of the parameter.

PL/Scope brings great beneit to any large-size database application where
developers frequently check the existence of an identiier so as to avoid redundancy.
In addition, it can work as a PL/SQL IDE to build up a repository of all identiiers
under multiple categories based on their type and usage.

The PL/Scope identiier collection
The PL/Scope feature can be enabled by setting a system parameter called
PLSCOPE_SETTINGS. By default, the feature is disabled as the parameter
value is IDENTIFIERS:NONE. The valid values for the parameters are NONE for
disabled and ALL for enabled parameters.

A DBA can modify the value of the PLSCOPE_SETTINGS compilation parameter as
IDENTIFIERS:ALL to enable the feature to collect the identiier information. Once the
feature is activated at the required level, Oracle captures identiier information of all
program units which are compiled henceforth.

Chapter 10

[321]

Setting PLSCOPE_SETTINGS at system or session level:

ALTER [SYSTEM | SESSION]

SET PLSCOPE_SETTINGS = ['IDENTIFIERS:ALL' | 'IDENTIFIERS:NONE']

Setting PLSCOPE_SETTINGS at object level:

ALTER [PROGRAM NAME] COMPILE

PLSCOPE_SETTINGS = ['IDENTIFIERS:ALL' | 'IDENTIFIERS:NONE']

For illustration and demonstration purpose, we will keep the setting as
IDENTIFIERS:ALL. A DBA performs it as shown in the following code snippet:

/*Connect as sysdba*/

Conn sys/system as sysdba

Connected.

/*Modify the PLSCOPE_SETTTINGS*/

ALTER SYSTEM SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';

Session altered.

/*View the current setting of PLSCOPE_SETTINGS parameter*/

SELECT value

FROM v$parameter

WHERE name='plscope_settings'

/

VALUE

IDENTIFIERS:ALL

Another important aspect of PL/Scope is that it is stored only in the SYSAUX
tablespace. If the SYSAUX tablespace is unavailable, the feature remains in passive
state. Though the server does not raise any error message while logging, a warning
is raised:

/*Verify the PL/Scope occupancy in SYSAUX tablespace*/

SELECT occupant_desc, schema_name, space_usage_kbytes

FROM v$sysaux_occupants

WHERE occupant_name='PL/SCOPE'

/

OCCUPANT_DESC SCHEMA_NAME SPACE_USAGE_KBYTES

------------------------------ ------------ ------------------

PL/SQL Identifier Collection SYS 2496

Analyzing PL/SQL Code

[322]

The PL/Scope report
The PL/Scope report can be generated from the [DBA | ALL | USER]_IDENTIFIERS
dictionary view. [DBA | ALL | USER] provides different lavors to the view as per
the invoker's role:

/*Display the USER_IDENTIFIERS structure*/

SQL> desc USER_IDENTIFIERS

 Name Null? Type

 ----------------------- -------- ----------------

 NAME VARCHAR2(30)

 SIGNATURE VARCHAR2(32)

 TYPE VARCHAR2(18)

 OBJECT_NAME NOT NULL VARCHAR2(30)

 OBJECT_TYPE VARCHAR2(13)

 USAGE VARCHAR2(11)

 USAGE_ID NUMBER

 LINE NUMBER

 COL NUMBER

 USAGE_CONTEXT_ID NUMBER

Note the information captured for an identiier in the preceding
USER_IDENTIFIERS description:

•	 SIGNATURE: The unique hash code of the identiier
•	 TYPE: The user deined type of the identiier (Variable, Cursor, Formal,

and so on)

•	 OBJECT_NAME: The object name within which they are declared, assigned,
or used

•	 OBJECT_TYPE: The type of the object using the identiier
•	 USAGE: The identiier action as CALL, ASSIGNMENT, DEFINITION, DECLARATION,

or REFERENCE

•	 USAGE_ID: The unique key of the identiier usage
•	 LINE, COL: Exact location of the identiier in the program

Illustration
Let us now demonstrate the PL/Scope tool to capture identiier information of a
program unit. The program unit is a function which declares a cursor and local
variables to get the location of an input employee.

Chapter 10

[323]

The current setting of PLSCOPE_SETTINGS is IDENTIFIERS:ALL:

/*Connect as ORADEV*/

Conn ORADEV/ORADEV

Connected.

/*Create the function*/

CREATE OR REPLACE FUNCTION F_GET_LOC (P_EMPNO NUMBER)

RETURN NUMBER

IS

/*Cursor select location for the given employee*/

CURSOR C_DEPT IS

 SELECT d.loc

 FROM employees e, departments d

 WHERE e.deptno = d.deptno

 AND e.empno = P_EMPNO;

 l_loc NUMBER;

BEGIN

/*Cursor is open and fetched into a local variable*/

 OPEN C_DEPT;

 FETCH C_DEPT INTO l_loc;

 CLOSE C_DEPT;

/*Location returned*/

 RETURN l_loc;

END;

/

Function created.

Generate the PL/Scope identiier report from the USER_IDENTIFIERS
dictionary view:

/*Query the identifier information from the view*/

SELECT name, type, object_name, usage

FROM user_identifiers

WHERE object_name='F_GET_LOC'

/

NAME TYPE OBJECT_NAME USAGE

--------------- ------------------ --------------- -----------

L_LOC VARIABLE F_GET_LOC REFERENCE

C_DEPT CURSOR F_GET_LOC CALL

L_LOC VARIABLE F_GET_LOC ASSIGNMENT

C_DEPT CURSOR F_GET_LOC CALL

C_DEPT CURSOR F_GET_LOC CALL

NUMBER NUMBER DATATYPE F_GET_LOC REFERENCE

L_LOC VARIABLE F_GET_LOC DECLARATION

Analyzing PL/SQL Code

[324]

P_EMPNO FORMAL IN F_GET_LOC REFERENCE

C_DEPT CURSOR F_GET_LOC DECLARATION

NUMBER NUMBER DATATYPE F_GET_LOC REFERENCE

NUMBER NUMBER DATATYPE F_GET_LOC REFERENCE

P_EMPNO FORMAL IN F_GET_LOC DECLARATION

F_GET_LOC FUNCTION F_GET_LOC DEFINITION

F_GET_LOC FUNCTION F_GET_LOC DECLARATION

14 rows selected.

Assume that the database setting does not allow the capturing of identiiers'
information—only this feature can be enabled for the selective program units.
A program unit can be compiled as follows:

/*Alter the function with PLSCOPE_SETTINGS at object level*/

SQL> ALTER FUNCTION F_GET_LOC COMPILE PLSCOPE_
SETTINGS='IDENTIFIERS:ALL';

Function altered.

For better presentation purpose, you can generate the above output in report format:

/*Generate interactive report for identifiers*/

WITH v AS

(

 SELECT Line,

 Col,

 INITCAP(NAME) Name,

 LOWER(TYPE) Type,

 LOWER(USAGE) Usage,

 USAGE_ID, USAGE_CONTEXT_ID

 FROM USER_IDENTIFIERS

 WHERE Object_Name = 'F_GET_LOC'

 AND Object_Type = 'FUNCTION'

)

 SELECT LINE, RPAD(LPAD(' ', 2*(Level-1)) ||Name, 20, '.')||' '||

 RPAD(Type, 20)|| RPAD(Usage, 20)

 IDENTIFIER_USAGE_CONTEXTS

 FROM v

 START WITH USAGE_CONTEXT_ID = 0

 CONNECT BY PRIOR USAGE_ID = USAGE_CONTEXT_ID

 ORDER SIBLINGS BY Line, Col

/

Chapter 10

[325]

Refer to the following screenshot for the output:

Applications of the PL/Scope report
The PL/Scope identiier report can achieve the following objectives:

•	 It searches all the identiiers declared in a schema (USAGE = 'DECLARATION').
The SELECT query lists all identiiers declared in the schema as shown in the
following screenshot:

/*List the identifiers declared in the current schema*/

SELECT NAME, SIGNATURE, TYPE

FROM USER_IDENTIFIERS

WHERE USAGE='DECLARATION'

ORDER BY OBJECT_TYPE, USAGE_ID

/

•	 It searches all identiiers of a speciic type (BLOB, CURSOR, CONSTANT, and so
on) used in a schema. The following SQL query lists all the cursors declared
in the schema:

/*List the identifiers declared as CURSOR in the current schema*/

SELECT NAME, SIGNATURE, OBJECT_NAME, TYPE

FROM USER_IDENTIFIERS

WHERE USAGE='DECLARATION'

AND TYPE = 'CURSOR'

ORDER BY OBJECT_TYPE, USAGE_ID

/

Analyzing PL/SQL Code

[326]

•	 It searches all redundant identiiers within a program unit which are not
referenced inside the executable section of the program:

/*List the redundant identifiers declared in the current schema*/

SELECT NAME, OBJECT_NAME, TYPE, SIGNATURE

FROM USER_IDENTIFIERS T

WHERE USAGE='DECLARATION'

AND NOT EXISTS (SELECT 1

 FROM USER_IDENTIFIERS

 WHERE SIGNATURE=T.SIGNATURE

 AND USAGE<>'DECLARATION')

/

•	 It determines the actions performed on an identiier in a program:
/*List the actions on a specific identifier in the schema*/

SELECT name, object_name, type, usage, line

FROM USER_IDENTIFIERS T

WHERE signature='C6DC4D2D5770696415F7EC524AFADAE4'

/

The DBMS_METADATA package
The DBMS_METADATA package was introduced in Oracle9i. It is a metadata API
which is used to extract the deinitions (DDL) of schema objects. The package was
introduced to get rid of DDL exports, which used to produce poorly formatted
DDL scripts. It is a powerful package which can generate DDL and retrieve relevant
information associated with an object in XML (by default), or textual format. The
package is owned by SYS while all other users work with its public synonym.

The package provides utilities to set the required formatting for the DDL, transforms,
and parse items. Once the formatting settings start over, using transform handlers,
the deinition of an object can be retrieved as XML or text. It also provides the
lexibility to execute DDL. Let us see some of the major features of DBMS_METADATA:

•	 Generate DDL through GET_DDL (GET_XML is its XML equivalent).

•	 Generate DDL for object dependencies through GET_DEPENDENT_DDL
(GET_DEPENDENT_XML is its XML equivalent).

•	 Generate DDL for system grants on an object through GET_GRANTED_DDL
(GET_GRANTED_XML is its XML equivalent).

•	 Manage and modify object deinitions such as add column, drop column,
rename table, manage partitions, indexes, and so on.

Chapter 10

[327]

•	 Callable from the SELECT statements.

•	 DBMS_METADATA uses public synonyms of SYS-owned object and table types.

•	 Additional options have been added in the Oracle 10g release.

•	 Data pump (Oracle 10g) uses DBMS_METADATA to retrieve schema
object DDLs.

DBMS_METADATA data types
and subprograms
As referred to earlier, the DBMS_METADATA package uses the public synonyms of
SYS-owned data structures. The following list shows SYS-owned object types:

•	 SYS.KU$_PARSED_ITEM: It is the object to capture the attributes of object
metadata of a single object. The object structure looks as follows:

CREATE TYPE sys.ku$_parsed_item AS OBJECT

(

 item VARCHAR2(30),

 value VARCHAR2(4000),

 object_row NUMBER

)

ITEM, VALUE form the attribute name value pair for OBJECT_ROW.

•	 SYS.KU$_PARSED_ITEMS: It is a nested table of SYS.KU$PARSED_ITEM to hold
the object metadata attributes for multiple objects.

•	 SYS.KU$_DDL: It is an object type to capture the DDL of an object along with
its parsed item information. The object type structure looks as follows:

CREATE TYPE sys.ku$_ddl AS OBJECT

(

 ddlText CLOB,

 parsedItem sys.ku$_parsed_items

)

The parsed object information is stored in PARSEDITEM.

•	 SYS.KU$_DDLS: It is a nested table of SYS.KU$_DDL returned by the FETCH_
DDL subprogram to hold the metadata of an object transformed into multiple
DDL statements.

•	 SYS.KU$_MULTI_DDL: It is an object type to hold the DDL for an object in
multiple transforms.

•	 SYS.KU$_MULTI_DDLS:It is a nested table of SYS.KU$_MULTI_DDL returned by
the CONVERT subprogram.

Analyzing PL/SQL Code

[328]

•	 SYS.KU$_ERRORLINE: It is an object type to capture the error information. The
object type structure is as follows:

CREATE TYPE sys.ku$_ErrorLine IS OBJECT

(

 errorNumber NUMBER,

 errorText VARCHAR2(2000)

)

/

•	 SYS.KU$_ERRORLINES: It is the nested table of the SYS.KU$_ERRORLINE
object type to hold the bulk error information during extraction of each DDL
statement.

•	 SYS.KU$_SUBMITRESULT: It is an object type to capture the complete error
information incurred in a DDL statement. The object type structure is as
follows:

CREATE TYPE sys.ku$_SubmitResult AS OBJECT

(

 ddl sys.ku$_ddl,

 errorLines sys.ku$_ErrorLines

)

/

•	 SYS.KU$_SUBMITRESULTS: It is a nested table of the SYS.KU$_SUBMITRESULT
object type to hold multiple DDL statements and corresponding error
information.

In the preceding list, KU$_PARSED_ITEM and KU$_DDL are the most frequently used
object types of the package.

The following table lists the DBMS_METADATA subprograms
(reference: Oracle documentation)

Subprogram Remarks

ADD_TRANSFORM function Speciies a transform that FETCH_[XML | DDL | CLOB]
applies to the XML representation of the retrieved
objects

CLOSE procedure Invalidates the handle returned by OPEN and cleans up
the associated state

CONVERT functions and
procedures

Convert an XML document to DDL

Chapter 10

[329]

Subprogram Remarks

FETCH_[XML | DDL | CLOB]
functions and procedures

Return metadata for objects meeting the criteria
established by OPEN, SET_FILTER, SET_COUNT,
ADD_TRANSFORM, and so on

GET_[XML | DDL | CLOB]
functions

Fetch the metadata for a speciied object as XML or
DDL, using only a single call

GET_QUERY function Returns the text of the queries that are used by
FETCH_[XML | DDL | CLOB]

OPEN function Speciies the type of object to be retrieved, the version
of its metadata, and the object model

OPENW function Opens a write context

PUT function Submits an XML document to the database

SET_COUNT procedure Speciies the maximum number of objects to be
retrieved in a single FETCH_[XML | DDL | CLOB] call

SET_FILTER procedure Speciies restrictions on the objects to be retrieved, for
example, the object name or schema

SET_PARSE_ITEM procedure Enables output parsing by specifying an object
attribute to be parsed and returned

SET_TRANSFORM_PARAM and

SET_REMAP_PARAM procedures

Speciiy parameters to the XSLT style sheets identiied
by transform_handle

Out of the preceding list, the subprograms can be segregated based on their work
function and utilization:

Subprograms used to retrieve multiple
objects from the database

Subprograms used to submit XML metadata to
the database

ADD_TRANSFORM function ADD_TRANSFORM function

CLOSE procedure 2 CLOSE procedure 2

FETCH_[XML | DDL | CLOB] functions
and procedures

CONVERT functions and procedures

GET_QUERY function OPENW function

GET_[XML | DDL | CLOB] functions PUT function

OPEN function SET_PARSE_ITEM procedure

SET_COUNT procedure SET_TRANSFORM_PARAM and
SET_REMAP_PARAM procedures

Analyzing PL/SQL Code

[330]

Subprograms used to retrieve multiple
objects from the database

Subprograms used to submit XML metadata to
the database

SET_FILTER procedure

SET_PARSE_ITEM procedure

SET_TRANSFORM_PARAM and
SET_REMAP_PARAM procedures

Parameter requirements
The parameter requirements for the DBMS_METADATA subprograms are as follows:

•	 Parameters are case sensitive

•	 Parameters cannot be passed by named notation, but by position only

The DBMS_METADATA transformation
parameters and ilters
As listed in the preceding API list, the SET_TRANSFORM_PARAM subprogram is
used to format and control the DDL output. It is used for both retrieval and
submission of metadata from or to the database. It is an overloaded procedure
with the following syntax:

DBMS_METADATA.SET_TRANSFORM_PARAM

(

 transform_handle IN NUMBER,

 name IN VARCHAR2,

 value IN VARCHAR2,

 object_type IN VARCHAR2 DEFAULT NULL

);

DBMS_METADATA.SET_TRANSFORM_PARAM

(

 transform_handle IN NUMBER,

 name IN VARCHAR2,

 value IN BOOLEAN DEFAULT TRUE,

 object_type IN VARCHAR2 DEFAULT NULL

);

DBMS_METADATA.SET_TRANSFORM_PARAM

(

 transform_handle IN NUMBER,

 name IN VARCHAR2,

 value IN NUMBER,

 object_type IN VARCHAR2 DEFAULT NULL

);

Chapter 10

[331]

From the preceding syntax:

•	 TRANSFORM_HANDLE: It is the handler, either from ADD_TRANSFORM, or a
generic handler constant SESSION_TRANSFORM, to affect the whole session.

•	 NAME: It is the name of the parameter to be modiied.
•	 VALUE: It is the transformed value.

Now, we will see some of the common sets of parameters applicable to all objects
in a schema:

Parameter Value Meaning

PRETTY TRUE | FALSE (default
value is TRUE)

If TRUE, produces properly indented
output

SQLTERMINATOR TRUE | FALSE (default
value is FALSE)

If TRUE, appends SQL terminator (; or /)
after each DDL

DEFAULT TRUE | FALSE If TRUE, resets all parameters to their
default state

INHERIT TRUE | FALSE If TRUE, inherits session level settings

For tables and views, the valid transform handlers are as follows:

Parameter Value Meaning

SEGMENT_
ATTRIBUTES

TRUE | FALSE (default
value is TRUE)

If TRUE, includes segment, tablespace,
logging and physical attributes

STORAGE TRUE | FALSE (default
value is FALSE)

If TRUE, includes storage clause

TABLESPACE TRUE | FALSE If TRUE, includes tablespace speciication
CONSTRAINTS TRUE | FALSE If TRUE, includes table constraints

REF_
CONSTRAINTS

TRUE | FALSE If TRUE, includes referential constraints

CONSTRAINTS_
AS_ALTER

TRUE | FALSE If TRUE, includes constraints in the
ALTER TABLE statements

OID TRUE | FALSE If TRUE, includes the object table OID

SIZE_BYTE_
KEYWORD

TRUE | FALSE If TRUE, includes the BYTE keywords
in string type column speciications

FORCE TRUE | FALSE If TRUE, creates view with the
FORCE option

Analyzing PL/SQL Code

[332]

Filters can be imposed on the working schema objects by using the DBMS_METADATA.
SET_FILTER procedure. It takes the metadata handle, ilter name, and its value as
input. It can be used to set include and exclude ilters:

PROCEDURE set_filter(

handle IN NUMBER,

name IN VARCHAR2,

value IN VARCHAR2|BOOLEAN|NUMBER,

object_type_path VARCHAR2

);

Some of the frequently used ilters are schema, user, object dependencies, table data,
tables, indexes, constraints, and so on. There are more than 70 ilters available until
Oracle 11g. It can be set as follows:

DBMS_METADATA.SET_FILTER(handle,'SCHEMA','ORADEV');

DBMS_METADATA.SET_FILTER(handle,'NAME','DEPARTMENTS');

Working with DBMS_METADATA—illustrations
We will illustrate the usage of browsing APIs of DBMS_METADATA.

Case 1—retrieve the metadata of a single object
DBMS_METADATA.GET_DDL can be called from the SELECT query:

/*Connect as ORADEV*/

Conn ORADEV/ORADEV

Connected.

/*Execute the DBMS_METADATA.GET_DDL to get the DDL for EMPLOYEES
table*/

SELECT dbms_metadata.get_ddl('TABLE','EMPLOYEES','ORADEV')

FROM DUAL

/

EMPLOYEE_DDL

 CREATE TABLE "ORADEV"."EMPLOYEES"

 (

 "EMPNO" NUMBER(4,0),

 "ENAME" VARCHAR2(10) NOT NULL ENABLE,

 "JOB" VARCHAR2(9),

 "MGR" NUMBER(4,0),

 "HIREDATE" DATE,

 "SAL" NUMBER(7,2),

 "COMM" NUMBER(7,2),

 "DEPTNO" NUMBER(2,0),

Chapter 10

[333]

 PRIMARY KEY ("EMPNO")

 USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS

 (

 INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645

 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT

)

 TABLESPACE "USERS" ENABLE

)

 SEGMENT CREATION IMMEDIATE

 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING

 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS
2147483645

 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE
DEFAULT
 CELL_FLASH_CACHE DEFAULT)

 TABLESPACE "USERS"

The same DDL generation can also be achieved through a generic function. The
function F_DDL_TABLE takes a table name as input and fetches its DDL script. It
returns the DDL script as CLOB. Since the transform handler opens only for the
TABLE of ORADEV schema, DDL scripts can only be used for tables:

/*Create function to get DDL of a given table*/

CREATE OR REPLACE FUNCTION get_ddl_table (p_table_name varchar2)

RETURN CLOB IS

 l_hdl NUMBER;

 l_th NUMBER;

 l_doc CLOB;

 BEGIN

/*specify the OBJECT TYPE*/

 l_hdl := DBMS_METADATA.OPEN('TABLE');

/*use FILTERS to specify the objects desired*/

 DBMS_METADATA.SET_FILTER(l_hdl ,'SCHEMA','ORADEV');

 DBMS_METADATA.SET_FILTER(l_hdl ,'NAME',p_table_name);

/*request to be TRANSFORMED into creation DDL*/

 l_th := DBMS_METADATA.ADD_TRANSFORM(l_hdl,'DDL');

/*FETCH the object*/

 l_doc := DBMS_METADATA.FETCH_CLOB(l_hdl);

/*release resources*/

 DBMS_METADATA.CLOSE(l_hdl);

 RETURN l_doc;

 END;

/

Function created.

Analyzing PL/SQL Code

[334]

The above DDL scripts generated from the query and function comprise the storage
clause, tablespace, and segment information, thus making them bulky and large.
These clauses can be skipped by setting the transform handlers for the session.
Before extracting the DDL, we will set the STORAGE, SEGMENT_ATTRIBUTES, PRETTY,
SQLTERMINATOR, and REF_CONSTRAINTS handlers for the session transform handler.

/*Connect to ORADEV*/

Conn ORADEV/ORADEV

Connected.

/*Set transform handler for STORAGE*/

EXEC DBMS_METADATA.SET_TRANSFORM_PARAM (DBMS_METADATA.SESSION_
TRANSFORM,'STORAGE',false);

/*Set transform handler for SEGMENT_ATTRIBUTES*/

EXEC DBMS_METADATA.SET_TRANSFORM_PARAM (DBMS_METADATA.SESSION_
TRANSFORM,'SEGMENT_ATTRIBUTES',false);

/*Set transform handler for PRETTY*/

EXEC DBMS_METADATA.SET_TRANSFORM_PARAM

(DBMS_METADATA.SESSION_TRANSFORM,'PRETTY',true);

/*Set transform handler for SQLTERMINATOR*/

EXEC DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFOR
M,'SQLTERMINATOR',true);

/*Set transform handler for REF_CONSTRAINTS*/

EXEC DBMS_METADATA.SET_TRANSFORM_PARAM(

DBMS_METADATA.SESSION_TRANSFORM,'REF_CONSTRAINTS',false);

/*Set transform handler for TABLESPACE*/

EXEC DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_
TRANSFORM,'TABLESPACE',false);

/*Set transform handler for SIZE_BYTE_KEYWORD*/

EXEC DBMS_METADATA.SET_TRANSFORM_PARAM(

DBMS_METADATA.SESSION_TRANSFORM,'SIZE_BYTE_KEYWORD',false);

Now, extracting the DDL script in a SELECT statement:

/*Generate the DDL for EMPLOYEES table*/

SELECT dbms_metadata.get_ddl('TABLE','EMPLOYEES','ORADEV') EMPLOYEE_
DDL

FROM dual;

EMPLOYEE_DDL

CREATE TABLE "ORADEV"."EMPLOYEES"

(

 "EMPNO" NUMBER(4,0),

 "ENAME" VARCHAR2(10) NOT NULL ENABLE,

 JOB" VARCHAR2(9),

Chapter 10

[335]

 "MGR" NUMBER(4,0),

 "HIREDATE" DATE,

 "SAL" NUMBER(7,2),

 COMM" NUMBER(7,2),

 "DEPTNO" NUMBER(2,0),

 PRIMARY KEY ("EMPNO") ENABLE

) ;

Case 2—retrieve the object dependencies on

the F_GET_LOC function
Refer to the following code snippet:

/*Retrieve object dependency for F_GET_LOC function*/

SELECT dbms_metadata.get_dependent_ddl

 ('OBJECT_GRANT','F_GET_LOC','ORADEV')OBJ_GRANTS

FROM DUAL;

OBJ_GRANTS

GRANT EXECUTE ON "ORADEV"."F_GET_LOC" TO "NANCY";

The output of the SELECT query shows that the ORADEV user has granted the EXECUTE
privilege on the function F_GET_LOC to the NANCY user.

Case 3—retrieve system grants on the
ORADEV schema
Refer to the following code snippet:

/*Retrieve system grants for the ORADEV user*/

SELECT dbms_metadata.get_granted_ddl

 ('SYSTEM_GRANT','ORADEV') SYS_GRANTS

FROM dual;

SYS_GRANTS

 GRANT DEBUG ANY PROCEDURE TO "ORADEV";

 GRANT DEBUG CONNECT SESSION TO "ORADEV";

 GRANT CREATE ANY CONTEXT TO "ORADEV";

 GRANT CREATE LIBRARY TO "ORADEV";

 GRANT UNLIMITED TABLESPACE TO "ORADEV";

 GRANT CREATE SESSION TO "ORADEV";

Analyzing PL/SQL Code

[336]

Case 4—retrieve objects of function type in

the ORADEV schema
It follows the same approach from Case 1 for tables owned by the ORADEV user.
Here, we will create a generic function to retrieve the DDL of a given function:

/*Create the function to generate DDL of a given function*/
CREATE OR REPLACE FUNCTION F_GET_FUN_DDL (P_NAME VARCHAR2)
RETURN CLOB IS
 l_hdl NUMBER;
 l_th NUMBER;
 l_doc CLOB;
 BEGIN

/*Open the transform handler*/
 l_hdl := DBMS_METADATA.OPEN('FUNCTION');

/*Set filter for the schema and the function name*/
 DBMS_METADATA.SET_FILTER(l_HDL ,'SCHEMA','ORADEV');
 DBMS_METADATA.SET_FILTER(l_hdl ,'NAME',P_NAME);

/*Generate the DDL and fetch in a local CLOB variable*/
 l_th := DBMS_METADATA.ADD_TRANSFORM(l_hdl,'DDL');
 l_doc := DBMS_METADATA.FETCH_CLOB(l_hdl);
 DBMS_METADATA.CLOSE(l_hdl);

/*Return the DDL*/
 RETURN l_doc;
 END;

/

Function created

Testing the above function for the function F_GET_LOC:

/*Declare en environment variable*/
VARIABLE M_FUN_DDL clob;

/*Execute the function*/
EXEC :M_FUN_DDL := F_GET_FUN_DDL ('F_GET_LOC');

/*Print the variable*/
PRINT M_FUN_DDL
 CREATE OR REPLACE FUNCTION "ORADEV"."F_GET_LOC" (P_EMPNO NUMBER)
 RETURN NUMBER
IS
CURSOR C_DEPT IS
 SELECT d.loc
 FROM employees e, departments d
 WHERE e.deptno = d.deptno
 AND e.empno = P_EMPNO;
 l_loc NUMBER;

 l_red number;

Chapter 10

[337]

 L_BLUE NUMBER;

BEGIN

 OPEN C_DEPT;

 FETCH C_DEPT INTO l_loc;

 CLOSE C_DEPT;

 RETURN l_loc;

END;

Similarly, DDL scripts of all functions in a schema can be retrieved by holding all the
functions in a cursor and iterating it to call the F_GET_FUN_DDL function.

Summary
In this chapter, we understood the usage of Oracle supplied packages and
dictionary views to ind the coding information. We got introduced to a new
feature in Oracle 11g, the PL/Scope tool, and learned how to determine the usage
of an identiier in the PL/SQL program. At the end of the chapter, we covered the
DBMS_METADATA package and demonstrated the extraction of a schema object
deinition as XML or DDL using the package.

In the next chapter, we will overview the strategies of tracing and proiling in PL/SQL.

Practice exercise
1. Which of the following dictionary views is used to get information about the

subprogram arguments?

a. ALL_OBJECTS

b. ALL_ARGUMENTS

c. ALL_DEPENDENCIES

d. ALL_PROGRAMS

2. The tablespace information on a database server:

SELECT tablespace_name

FROM DBA_TABLESPACES

/

TABLESPACE_NAME

SYSTEM

UNDOTBS1

TEMP

USERS

EXAMPLE

Analyzing PL/SQL Code

[338]

You execute the following command in the session:

SQL> ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';

Session altered.

Identify the correct statements:

a. The identiier information would be captured by PL/Scope for the
program created or compiled in the session.

b. The identiier information would not be captured by PL/Scope as
IDENTIFIERS:ALL can be enabled only at the SYSTEM level.

c. The identiier information would be captured by PL/Scope only for
the programs which are created in the session.

d. The identiier information would not be captured by PL/Scope since
the SYSAUX tablespace is not available.

3. The parameters speciied in DBMS_METADATA are case sensitive:

a. True

b. False

4. DBMS_UTILITY.FORMAT_CALL_STACK accomplishes which of
the following objectives?

a. Captures exceptions in a PL/SQL block.

b. Prepares the stack of sequential calls.

c. Prepares the stack of execution actions.

d. Prepares the stack of block proiler.

5. Choose the accomplishments of the DBMS_METADATA package.

a. Generates a report of invalidated objects in a schema.

b. Generates DDL for a given or all object(s) in a schema.

c. Generates an object to table dependency report in a schema

d. Generates a report of object statistics in a schema

6. The PL/Scope tool can store the identiier data only in the USERS tablespace.

a. True

b. False

7. Which of the following are valid parameter values of SET_TRANSFORM_PARAM
for tables?

a. STORAGE

b. FORCE

c. PRETTY

d. INHERIT

Proiling and Tracing
PL/SQL Code

Now that we have stepped out of the code development stage, we are discussing
best practices of code management and maintenance. In the last chapter, we walked
through the strategies of code tracking, error tracking, and the PL/Scope tool for
identiier tracking. We noticed that the PL/Scope tool does static code analysis. In
this chapter, we are going to learn two important techniques for measuring code
performance. The techniques are known as tracing and proiling. The primary goal
of the code tracing and proiling techniques is to identify performance bottlenecks in
the PL/SQL code and gather performance statistics at each execution step. We will
discuss the tracing and proiling features in PL/SQL in the following topics:

•	 Tracing PL/SQL programs

	° The DBMS_TRACE package

	° Viewing trace information

•	 Proiling PL/SQL programs
	° The DBMS_HPROF package

	° The plshprof utility

	° Generating HTML proiler reports

Proiling and Tracing PL/SQL Code

[340]

Tracing the PL/SQL programs
Code tracing is an important technique to measure the code performance during
runtime and identify the expensive areas in the code which can be worked upon
to improve the performance. The tracing feature shows the code execution path
followed by the server and reveals the time consumed at each step. Often developers
assume tracing and debugging as one step, but both are distinctive features. Tracing
is a one-time activity which analyses the complete code and prepares the platform for
debugging. On the other hand, debugging is the bug identiication and ixing activity
where the trace report can be used to identify and work upon the problematic points.

Oracle offers multiple methods of tracing:

•	 DBMS_APPLICATION_INFO: The SET_MODULE and SET_ACTION subprograms
can be used to register a speciic action in a speciic module.

•	 DBMS_TRACE: The Oracle built-in package allows tracing of PL/SQL
subprograms, exceptions and SQL execution. The trace information is logged
into SYS owned tracing tables (created by executing tracetab.sql).

•	 DBMS_SESSION and DBMS_MONITOR: The package can be employed in parallel
to set the client ID and monitor the respective client ID. It is equivalent to a
10046 trace and logs the code diagnostics in a trace ile.

•	 The trcsess and tkprof utilities: The trcsess utility merges multiple
trace iles in one and is usually deployed in shared server environments and
parallel query sessions. The tkprof utility used to be a conventional tracing
utility which generated readable output ile. It was useful for large trace iles
and can also be used to load the trace information into a database.

Besides the methods mentioned in the preceding list, there are third-party tools from
LOG4PLSQL and Quest which are used to trace the PL/SQL codes. A typical trace
low in a program is demonstrated in the following diagram:

Enable Trace feature for system,

session, or program

Start Tracing in the program

Execute the program to be traced

Stop the tracing

Chapter 11

[341]

In this chapter, we will drill down the DBMS_TRACE package to demonstrate the
tracing feature in PL/SQL. Further, we will learn the proiling strengths of
DBMS_HPROF in PL/SQL.

The DBMS_TRACE package
DBMS_TRACE is a built-in package in Oracle to enable and disable tracing in sessions.
As soon as a program is executed in a trace enabled session, the server captures
and logs the information in trace log tables. The dbmspbt.sql and prvtpbt.sql
table scripts are available in the database installation folder. The trace tables can be
analysed to review the execution low of the PL/SQL program and take decisions
in accordance.

Installing DBMS_TRACE
If the DBMS_TRACE package is not installed at the server, it can be installed by running
the following scripts from the database installation folder:

•	 $ORACLE_HOME\rdbms\admin\dbmspbt.sql: This script creates the DBMS_
TRACE package speciication

•	 $ORACLE_HOME\rdbms\admin\prvtpbt.plb: This script creates the DBMS_
TRACE package body

The scripts must be executed as the SYS user and in the same order as mentioned.

DBMS_TRACE subprograms
The DBMS_TRACE subprograms deal with the setting of the trace, getting the trace
information, and clearing the trace. While coniguring the database for the trace, the
trace level must be speciied to signify the degree of tracing in the session. The trace
level majorly deals with two levels. The irst level traces all the events of an action
while the other level traces only the actions from those program units which have
been compiled with the debug and trace option.

The DBMS_TRACE constants are used for setting the trace level. Even the numeric
values are available for all the constants, but still the constant names are used in
the programs.

Proiling and Tracing PL/SQL Code

[342]

The summary of DBMS_TRACE constants is as follows (refer to the Oracle documentation
for more details). Note that all constants are of the INTEGER type:

DBMS_TRACE constant Default Remarks

TRACE_ALL_CALLS 1 Traces all calls

TRACE_ENABLED_CALLS 2 Traces calls which are enabled for tracing

TRACE_ALL_EXCEPTIONS 4 Traces all exceptions

TRACE_ENABLED_EXCEPTIONS 8 Traces exceptions which are enabled for
tracing

TRACE_ALL_SQL 32 Traces all SQL statements

TRACE_ENABLED_SQL 64 Traces SQL statements which are enabled
for tracing

TRACE_ALL_LINES 128 Traces each line

TRACE_ENABLED_LINES 256 Traces lines which are enabled for tracing

TRACE_PAUSE 4096 Pauses tracing (controls tracing process)

TRACE_RESUME 8192 Resume tracing (controls tracing process)

TRACE_STOP 16384 Stops tracing (controls tracing process)

TRACE_LIMIT 16 Limits the trace information (controls
tracing process)

TRACE_MINOR_VERSION 0 Administer tracing process

TRACE_MAJOR_VERSION 1 Administer tracing process

NO_TRACE_ADMINISTRATIVE 32768 Prevents tracing of administrative events
such as:

•	 PL/SQL Trace Tool started

•	 Trace flags changed

•	 PL/SQL Virtual Machine
started

•	 PL/SQL Virtual Machine
stopped

NO_TRACE_HANDLED_EXCEPTIONS 65536 Prevents tracing of handled exceptions

The subprograms contained in the DBMS_TRACE package are as follows:

DBMS_TRACE subprogram Remarks

CLEAR_PLSQL_TRACE procedure Stops trace data dumping in session

GET_PLSQL_TRACE_LEVEL function Gets the trace level

GET_PLSQL_TRACE_RUNNUMBER function Gets the current sequence of execution
of trace

Chapter 11

[343]

DBMS_TRACE subprogram Remarks

PLSQL_TRACE_VERSION procedure Gets the version number of the trace package

SET_PLSQL_TRACE procedure Starts tracing in the current session

COMMENT_PLSQL_TRACE procedure Includes comment on the PL/SQL tracing

INTERNAL_VERSION_CHECK function Has a value as 0, if the internal version check
has not been done

LIMIT_PLSQL_TRACE procedure Sets limit for the PL/SQL tracing

PAUSE_PLSQL_TRACE procedure Pauses the PL/SQL tracing

RESUME_PLSQL_TRACE procedure Resumes the PL/SQL tracing

In the preceding list, the key subprograms are:

•	 SET_PLSQL_TRACE: It kicks off the PL/SQL tracing session. For example,
DBMS_TRACE.SET_PLSQL_TRACE (DBMS_TRACE.TRACE_ALL_SQL) traces all
SQL in the program.

•	 CLEAR_PLSQL_TRACE: It stops the tracing session.

PLSQL_TRACE_VERSION returns the current trace version as the OUT parameter value.

Trace level that controls the tracing process (stop, pause, resume,
and limit) cannot be used in combination with other trace levels

The PLSQL_DEBUG parameter and the
DEBUG option
As a prerequisite, a subprogram can be enabled for tracing only if it is compiled in
the debug mode. The PLSQL_DEBUG parameter is used to enable a database, session,
or a program for debugging. The compilation parameter can be set at SYSTEM,
SESSION, or any speciic program level. When set to TRUE, the program units are
compiled in the interpreted mode for debug purpose. The Oracle server explicitly
compiles the program in interpreted mode to use the strengths of a debugger.
However, debugging of a natively compiled program unit is not yet supported in
the Oracle database. For this reason, native compilation of program units is less
preferable than interpreted mode during development.

ALTER [SYSTEM | SESSION] SET PLSSQL_DEBUG= [TRUE | FALSE]

Proiling and Tracing PL/SQL Code

[344]

The trace can be enabled at the subprogram level (not for anonymous blocks):

ALTER [Procedure | Function | Package] [Name]

COMPILE PLSQL_DEBUG= [TRUE | FALSE]

/

Or

ALTER [Procedure | Function | Package] [Name] COMPILE DEBUG [BODY]

/

Enabling tracing at the subprogram level is usually preferred to avoid dumping of
huge volume of trace data.

The PLSQL_DEBUG parameter has been devalued in Oracle 11g.
When a subprogram is compiled with the PLSQL_DEBUG option
set to TRUE in a warning enabled session, the server records the
following two warnings:

PLW-06015: parameter PLSQL_DEBUG is deprecated;
use PLSQL_OPTIMIZE_LEVEL = 1

PLW-06013: deprecated parameter PLSQL_DEBUG forces
PLSQL_OPTIMIZE_LEVEL <= 1

Viewing the PL/SQL trace information
Oracle provides no built-in data dictionary view to query the trace session
information. Instead, the trace information is logged into the trace tables. These trace
tables can be created by running the $ORACLE_HOME\rdbms\admin\tracetab.sql
script as SYS user. The script creates the following two tables:

•	 PLSQL_TRACE_RUNS: This table stores execution-speciic information.
The following structure shows that the table contains the trace header
information such as RUNID and comments:

/*Describe the PLSQL_TRACE_RUNS table structure*/

SQL> DESC plsql_trace_runs

 Name Null? Type

 --- -------- --------------

 RUNID NOT NULL NUMBER

 RUN_DATE DATE

 RUN_OWNER VARCHAR2(31)

 RUN_COMMENT VARCHAR2(2047)

 RUN_COMMENT1 VARCHAR2(2047)

Chapter 11

[345]

 RUN_END DATE

 RUN_FLAGS VARCHAR2(2047)

 RELATED_RUN NUMBER

 RUN_SYSTEM_INFO VARCHAR2(2047)

 SPARE1 VARCHAR2(256)

In the preceding table, RUNID is the unique run identiier which derives
its value from a sequence, PLSQL_TRACE_RUNNUMBER. The RUN_DATE and
RUN_END columns specify the start and end time of the run respectively.
The RUN_SYSTEM_INFO and SPARE1 columns are the currently unused
columns in the table.

•	 PLSQL_TRACE_EVENTS: This table displays accumulated results from trace
executions and captures the detailed trace information:

/*Describe the PLSQL_TRACE_EVENTS table structure*/

SQL> desc plsql_trace_events

 Name Null? Type

 --- -------- --------------

 RUNID NOT NULL NUMBER

 EVENT_SEQ NOT NULL NUMBER

 EVENT_TIME DATE

 RELATED_EVENT NUMBER

 EVENT_KIND NUMBER

 EVENT_UNIT_DBLINK VARCHAR2(4000)

 EVENT_UNIT_OWNER VARCHAR2(31)

 EVENT_UNIT VARCHAR2(31)

 EVENT_UNIT_KIND VARCHAR2(31)

 EVENT_LINE NUMBER

 EVENT_PROC_NAME VARCHAR2(31)

 STACK_DEPTH NUMBER

 PROC_NAME VARCHAR2(31)

 PROC_DBLINK VARCHAR2(4000)

 PROC_OWNER VARCHAR2(31)

 PROC_UNIT VARCHAR2(31)

 PROC_UNIT_KIND VARCHAR2(31)

 PROC_LINE NUMBER

 PROC_PARAMS VARCHAR2(2047)

 ICD_INDEX NUMBER

 USER_EXCP NUMBER

 EXCP NUMBER

 EVENT_COMMENT VARCHAR2(2047)

 MODULE VARCHAR2(4000)

 ACTION VARCHAR2(4000)

 CLIENT_INFO VARCHAR2(4000)

Proiling and Tracing PL/SQL Code

[346]

 CLIENT_ID VARCHAR2(4000)

 ECID_ID VARCHAR2(4000)

 ECID_SEQ NUMBER

 CALLSTACK CLOB

 ERRORSTACK CLOB

The following points can be noted about this table:

	° The RUNID column references the RUNID column of the
PLSQL_TRACE_RUNS table

	° EVENT_SEQ is the unique event identiier within a single run
	° The EVENT_UNIT, EVEN_UNIT_KIND, EVENT_UNIT_OWNER, and EVENT_

LINE columns capture the program unit information (such as name,
type, owner, and line number) which initiates the trace event

	° The PROC_NAME, PROC_UNIT, PROC_UNIT_KIND, PROC_OWNER, and
PROC_LINE columns capture the procedure information (such as
name, type, owner, and line number) which is currently being traced

	° The EXCP and USER_EXCP columns apply to the exceptions occurring
during the trace

	° The EVENT_COMMENT column gives user deined comment or the
actual event description

	° The MODULE, ACTION, CLIENT_INFO, CLIENT_ID, ECID_ID, and ECID_
SEQ columns capture information about the session running on a
SQL*Plus client

	° The CALLSTACK and ERRORSTACK columns store the call stack
information

Once the script has been executed, the DBA should create public synonyms
for the tables and sequence in order to be accessed by all users.

/*Connect as SYSDBA*/

Conn sys/system as SYSDBA

Connected.

/*Create synonym for PLSQL_TRACE_RUNS*/

CREATE PUBLIC SYNONYM plsql_trace_runs FOR plsql_trace_runs

/

Synonym created.

/*Create synonym for PLSQL_TRACE_EVENTS*/

CREATE PUBLIC SYNONYM plsql_trace_events FOR plsql_trace_events

/

Chapter 11

[347]

Synonym created.

/*Create synonym for PLSQL_TRACE_RUNNUMBER sequence*/

CREATE PUBLIC SYNONYM plsql_trace_runnumber FOR plsql_trace_
runnumber

/

Synonym created.

/*Grant privileges on the PLSQL_TRACE_RUNS*/

GRANT select, insert, update, delete ON plsql_trace_runs TO PUBLIC

/

Grant succeeded.

/*Grant privileges on the PLSQL_TRACE_EVENTS*/

GRANT select, insert, update, delete ON plsql_trace_events TO
PUBLIC

/

Grant succeeded.

/*Grant privileges on the PLSQL_TRACE_RUNNUMBER*/

GRANT select ON plsql_trace_runnumber TO PUBLIC

/

Grant succeeded.

Demonstrating the PL/SQL tracing
PL/SQL tracing is demonstrated in the following steps:

1. The F_GET_LOC function looks as follows (this function has been already
created in the schema):

/*Connect as ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Create the function*/

CREATE OR REPLACE FUNCTION F_GET_LOC (P_EMPNO NUMBER)

RETURN VARCHAR2

IS

Proiling and Tracing PL/SQL Code

[348]

/*Cursor select location for the given employee*/

CURSOR C_DEPT IS

 SELECT d.loc

 FROM employees e, departments d

 WHERE e.deptno = d.deptno

 AND e.empno = P_EMPNO;

l_loc VARCHAR2(100);

BEGIN

/*Cursor is open and fetched into a local variable*/

 OPEN C_DEPT;

 FETCH C_DEPT INTO l_loc;

 CLOSE C_DEPT;

/*Location returned*/

 RETURN l_loc;

END;

/

Function created.

We will trace the execution path for the preceding function.

2. Recompile the F_GET_LOC function for tracing:

/*Compile the function in debug mode*/

SQL> ALTER FUNCTION F_GET_LOC COMPILE DEBUG

/

Function altered.

3. Start the tracing session to trace all calls:

BEGIN

/*Enable tracing for all calls in the session*/

 DBMS_TRACE.SET_PLSQL_TRACE(DBMS_TRACE.TRACE_ALL_CALLS);

END;

/

Specify additional trace levels using the + sign as:

DBMS_TRACE.SET_PLSQL_TRACE (tracelevel1 +
tracelevel2 ...)

Chapter 11

[349]

4. Execute the function and capture the result into a bind variable:

/*Declare a SQLPLUS environment variable*/

SQL> VARIABLE M_LOC VARCHAR2(100);

/*Execute the function and assign the return output to the
variable*/

SQL> EXEC :M_LOC := F_GET_LOC (7369);

PL/SQL procedure successfully completed.

/*Print the variable*/

SQL> PRINT M_LOC

M_LOC

DALLAS

5. Stop the trace session:

BEGIN

/*Stop the trace session*/

 DBMS_TRACE.CLEAR_PLSQL_TRACE;

END;

/

6. Query the trace log tables.

Query the PLSQL_TRACE_RUNS table to retrieve the current RUNID:

/*Query the PLSQL_TRACE_RUNS table*/

SELECT runid, run_owner, run_date

FROM plsql_trace_runs

ORDER BY runid

/

 RUNID RUN_OWNER RUN_DATE

---------- ------------------------------- ---------

 1 ORADEV 29-JAN-12

Query the PLSQL_TRACE_EVENTS table to retrieve the trace events for the RU-
NID as 1.

The highlighted portion shows the tracing of execution of the F_GET_LOC
function. The trace events appearing before and after the highlighted portion
represent the starting and stopping of the trace session.

/*Query the PLSQL_TRACE_EVENTS table*/

SELECT runid,

Proiling and Tracing PL/SQL Code

[350]

 event_comment,

 event_unit_owner,

 event_unit,

 event_unit_kind,

 event_line

FROM plsql_trace_events

WHERE runid = 1

ORDER BY event_seq

/

The output of the preceding query is shown in the following screenshot:

The query output shows the F_GET_LOC function execution low starting
from the time the trace session started (EVENT_COMMENT = PL/SQL Trace
Tool started) till the trace session was stopped (EVENT_COMMENT = PL/SQL
trace stopped).

Proiling the PL/SQL programs
We just saw tracing capabilities in PL/SQL programs. It presents the execution low
of the program in an interactive format with clear comments at each stage. But it
doesn't provide the execution statistics of the program which prevents the user from
determining the performance of a program. The user never comes to know about the
time consumed at each step or process.

Before the release of Oracle 11g, DBMS_PROFILER was used as the primary tool for
proiling PL/SQL programs.

Chapter 11

[351]

Oracle hierarchical proiler—the
DBMS_HPROF package
Oracle introduced the PL/SQL hierarchical proiler in Oracle 11g release 1. The
proiling was restructured as hierarchical proiling. The hierarchical proiling could
proile even the subprogram calls made in the PL/SQL code. It ills the gap between
tracing loopholes and the expectations of performance tracing. The hierarchical
proiler creates the dynamic execution proile of a PL/SQL program. The eficiencies
of the hierarchical proiler are as follows:

•	 Distinct reporting for SQL and PL/SQL time consumption.

•	 Reports count of distinct subprograms calls made in the PL/SQL code and
the time spent with each subprogram call.

•	 Multiple interactive analytics reports in HTML format using the command
line utility.

•	 More eficient than other tracing utilities and offers more powerful proiling
than a conventional proiler. The conventional DBMS_PROFILER tracks the
performance at a lower level (individual line of programs) while DBMS_HPROF
tracks the cumulative performance of a program unit.

The DBMS_HPROF package implements hierarchical proiling. It is a SYS owned Oracle
built-in package whose subprograms proile the PL/SQL code execution.

The PL/SQL hierarchical proiler consists of two subcomponents. The two
components—Data collector and Analyzer—are indicative of the two-step
hierarchical proiling process.

Data

collector Analyzer

The Data collector component is the "worker" component which initiates the proiling
process, collects all the raw proiler data from the PL/SQL code execution, and stops.
The raw proiler data is dumped into a system-based text ile for further analysis. In
simple words, it stakes itself to prepare the stage for the Analyzer component.

The Analyzer component takes the raw proiler data and loads it into the
proiler log tables. The effort of the component lies in understanding the raw
proiler data and placing it correctly in the proiler tables. Conceptually, the
Analyzer component lives the same life cycle as that of an ETL (Extraction,
Transformation, and Loading) process.

Proiling and Tracing PL/SQL Code

[352]

The following table shows the DBMS_HPROF subprograms:

Subprogram Description

ANALYZE function Analyzes the raw proiler output and produces
hierarchical proiler information in database tables

START_PROFILING procedure Starts hierarchical proiler data collection in the
user's session

STOP_PROFILING procedure Stops proiler data collection in the user's session

In the preceding subprograms list, the START_PROFILING and STOP_PROFILING
procedures come under the Data collector component while the subprogram
ANALYZE is a sure selection under the Analyzer component.

The DBA must grant the EXECUTE privilege to the user who intends to perform
proiling activity.

View proiler information
Similar to the trace log tables, Oracle 11g has facilitated the proiler with relational
tables to log the analyzed proiler data. The proiler log tables can be created by
running the $ORACLE_HOME\rdbms\admin\dbmshptab.sql script. On execution
of this script, the following three tables are created:

•	 DBMSHP_RUNS: This table maintains the lat information about each command
executed during proiling

•	 DBMSHP_FUNCTION_INFO: This table contains information about the
proiled function

•	 DBMSHP_PARENT_CHILD_INFO: This table contains parent-child
proiler information

The script execution might raise some exceptions which can be ignored for the
irst time. Once the script is executed and tables are created, the DBA must grant
a SELECT privilege on these tables to the users.

Demonstrating the proiling of a PL/SQL program
The following steps demonstrate the proiling of a PL/SQL stored function,
F_GET_LOC:

1. Create a directory to create a trace ile for raw proiler data:
/*Connect as sysdba*/

Conn sys/system as sysdba

Connected.

Chapter 11

[353]

/*Create directory where raw profiler data would be stored*/

SQL> CREATE DIRECTORY PROFILER_REP AS 'C:\PROFILER\'

/

Directory created.

/*Grant read, write privilege on the directory to ORADEV*/

SQL> GRANT READ, WRITE ON DIRECTORY PROFILER_REP TO ORADEV

/

Grant succeeded.

/*Grant execute privilege on DBMS_HPROF package to ORADEV*/

SQL> GRANT EXECUTE ON DBMS_HPROF TO ORADEV

/

Grant succeeded.

/*Grant SELECT privilege on DBMSHP_RUNS to ORADEV*/

SQL> GRANT select on DBMSHP_RUNS to ORADEV

/

Grant succeeded.

/*Grant SELECT privilege on DBMSHP_FUNCTION_INFO to ORADEV*/

SQL> GRANT select on DBMSHP_FUNCTION_INFO to ORADEV

/

Grant succeeded.

/*Grant SELECT privilege on DBMSHP_PARENT_CHILD_INFO to ORADEV*/

SQL> GRANT select on DBMSHP_PARENT_CHILD_INFO to ORADEV

/

Grant succeeded.

2. Start the proiling:
/*Connect to ORADEV*/

Conn ORADEV/ORADEV

Connected.

BEGIN

/*Start the profiling*/

/*Specify the directory and file name*/

Proiling and Tracing PL/SQL Code

[354]

 DBMS_HPROF.START_PROFILING ('PROFILER_REP', 'F_GET_LOC.TXT');

END;

/

PL/SQL procedure successfully completed.

max_depth is the third parameter of the START_PROFILING
subprogram which can be used to limit recursive subprogram
calls. By default, it is NULL.

3. Execute the F_GET_LOC function:

/*Declare a SQLPLUS environment variable*/

SQL> VARIABLE M_LOC VARCHAR2(100);

/*Execute the function and assign the return output to the
variable*/

SQL> EXEC :M_LOC := F_GET_LOC (7369);

PL/SQL procedure successfully completed.

/*Print the variable*/

SQL> PRINT M_LOC

M_LOC

DALLAS

4. Stop the proiling
BEGIN

/*Stop the profiling */

 DBMS_HPROF.STOP_PROFILING;

END;

/

PL/SQL procedure successfully completed.

5. Check the PROFILER_REP database directory. A text ile, F_GET_LOC.txt, has
been created with the raw proiler content. A small screen cast of the raw
proiler data is as follows:
P#V PLSHPROF Internal Version 1.0

P#! PL/SQL Timer Started

P#C PLSQL."".""."__plsql_vm"

P#X 7

P#C PLSQL."".""."__anonymous_block"

Chapter 11

[355]

P#X 695

P#C PLSQL."ORADEV"."F_GET_LOC"::8."F_GET_LOC"#762ba075453b8b0d #1

P#X 6

P#C PLSQL."ORADEV"."F_GET_LOC"::8."F_GET_LOC.C_
DEPT"#980980e97e42f8ec #5

P#X 15

P#C SQL."ORADEV"."F_GET_LOC"::8."__static_sql_exec_line6" #6

P#X 67083

…

…

From the preceding sample of raw proiler data, one can get clear indications
for the following:

•	 Namespace distinction at each line as SQL or PLSQL

•	 Operations captured by the hierarchical proiler as follows:
	° __anonymous_block indicates anonymous block execution

	° __dyn_sql_exec_lineline# indicates dynamic SQL
statement execution at line#

	° __pkg_init indicates PL/SQL package initialization

	° __plsql_vm indicates PL/SQL virtual machine call

	° __sql_fetch_lineline# indicates fetch operation at line#

	° __static_sql_exec_lineline# indicates static SQL
execution at line#

•	 Each line starts with an encrypted indication as P#X, P#C. Let us
briely understand what they indicate:

	° P#C is the call event which indicates a subprogram call

	° P#R is the return event which indicates a "return" from
a subprogram

	° P#X shows the time consumed between the two
subprogram calls

	° P#! is the comment which appears in the analyzer's output

However, the raw proile doesn't appear to be a comprehensive one which can
be interpreted fast and easily. This leads to the need for an analyzer which can
translate the raw data into a meaningful form. The Analyzer component of
HPROF can reform the raw proiler data into accessible form. The raw proiler
text ile would be interpreted and loaded into proiling log tables.
Note that until Step 5, the Data collector component of the hierarchical
proiler was active. The raw proiler data has been collected and recorded
in a text ile.

Proiling and Tracing PL/SQL Code

[356]

6. Execute the ANALYZE subprogram to insert the data into proiler tables.
/*Connect as DBA*/

Conn sys/system as sysdba

Connected.

/*Start the PL/SQL block*/

DECLARE

 l_runid NUMBER;

BEGIN

/*Invoke the analyzer API*/

 l_runid := DBMS_HPROF.analyze

 (location => 'PROFILER_REP',

 FILENAME => 'F_GET_LOC.txt',

 run_comment => 'Analyzing the execution of F_
GET_LOC');

 DBMS_OUTPUT.put_line('l_runid=' || l_runid);

END;

/

PL/SQL procedure successfully completed

If proiling is enabled for a session and the trace ile contains a huge
volume of raw proiler data, you can analyze only selected subprograms
by specifying the TRACE parameter in the ANALYZE API. The following
example code snippet shows the usage of the TRACE parameter in the
ANALYZER subprogram. The MULTIPLE_RAW_PROFILES.txt trace ile
contains raw proiler data from multiple proiles. But only the proiles
of F_GET_SAL and F_GET_JOB can be analyzed as follows:

DECLARE

 l_runid NUMBER;

BEGIN

 l_runid:= dbms_hprof.analyze

 (location=> 'PROFILER_REP',

 filename=> 'MULTIPLE_RAW_PROFILES.txt',

 trace => '"F_GET_SAL"."F_GET_JOB"'

);

end;

/

Chapter 11

[357]

7. Query the proiling log tables
/*Query the DBMSHP_RUNS table*/

SELECT runid, total_elapsed_time,run_comment

FROM dbmshp_runs

ORDER BY runid

/

 RUNID TOTAL_ELAPSED_TIME RUN_COMMENT

---------- ------------------ ------------------------------------

 1 106407 Analyzing the execution of F_GET_LOC

In the preceding query result, note that TOTAL_ELAPSED_TIME is the total ex-
ecution time (in micro seconds) for the procedure. The run comment appears
as per the input given during analysis.

/*Query the DBMSHP_FUNCTION_INFO table*/

SELECT runid, owner, module, type, function, namespace, function_
elapsed_time,calls

FROM dbmshp_function_info

WHERE runid = 1

The output of the preceding query is shown in the following screenshot:

Here, we see how the analyzer output clearly indicates the step-by-step execution
proile of a PL/SQL program. It shows which engine (namespace) was employed on
which call event along with the time consumed at each event.

The plshprof utility
The analyzer component simpliies much of the problem by interpreting the raw
proiler data and loading it into the database tables. What more can one expect? But
the services of hierarchical proiler don't end here. The correct analysis of the proiler
data is as important as the interpretation of data. For this purpose, a command-line
tool has been provided which can generate multiple reports in HTML format.

plshprof is a command-line utility which reads the raw proiler data and generates
multiple HTML reports. Each report builds up and showcases a new frame of
analysis and offers better statistical foresight to the user. The sixteen reports
generated can be navigated from the main report page.

Proiling and Tracing PL/SQL Code

[358]

The plshprof utility can be executed as follows:

C:\Profiler path> plshprof –output [HTML FILE] [RAW PROFILER DATA]

Let us now generate the HTML report of the proiler data which we derived above:

C:\>cd profiler

C:\profiler>plshprof -output F_GET_LOC F_GET_LOC.TXT

PLSHPROF: Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 -
Production

[7 symbols processed]

[Report written to 'F_GET_LOC.html']

C:\profiler>

As soon as the plshprof utility process is over, the following HTML iles are
generated at the directory location:

•	 F_GET_LOC.html

•	 F_GET_LOC_2c.html

•	 F_GET_LOC_2f.html

•	 F_GET_LOC_2n.html

•	 F_GET_LOC_fn.html

•	 F_GET_LOC_md.html

•	 F_GET_LOC_mf.html

•	 F_GET_LOC_ms.html

•	 F_GET_LOC_nsc.html

•	 F_GET_LOC_nsf.html

•	 F_GET_LOC_nsp.html

•	 F_GET_LOC_pc.html

•	 F_GET_LOC_tc.html

•	 F_GET_LOC_td.html

•	 F_GET_LOC_tf.html

•	 F_GET_LOC_ts.html

Chapter 11

[359]

Here, F_GET_LOC.html is the main index ile which contains navigational links to all
other reports. The main index page is shown in the following screenshot:

Sample reports
In this section, we will overview some important reports:

•	 Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed
Time (microsecs): The report provides the lat view of raw proiler data.
It includes total call count, self time, subtree time, and descendants of
each function:

Proiling and Tracing PL/SQL Code

[360]

•	 Function Elapsed Time (microsecs) Data sorted by Total Function
Elapsed Time (microsecs): This is the module-level summary report
which shows the total time spent in each module and the total calls to
the functions in the module:

•	 Namespace Elapsed Time (microsecs) Data sorted by Namespace: This
report provides the distribution of time spent by the PL/SQL engine and
SQL engine separately. SQL and PLSQL are the two namespace categories
available for a block. It is very useful in reducing the disk I/O and hence
enhancing the block performance. The net sum of the distribution is always
100 percent:

Likewise, other reports also reveal and present some important statistics for the
PL/SQL code execution.

Chapter 11

[361]

Summary
In this chapter, we learned the tracing and proiling features of Oracle 11g.
While the tracing feature tracks the execution path of PL/SQL code, the proiling
feature reports the time consumed at each subprogram call or line number. We
demonstrated the implementation and analysis of tracing and proiling features.

In the next chapter, we will see how to identify vulnerable areas in a PL/SQL code
and safeguard them against injective attacks.

Practice exercise
1. Which component of the PL/SQL hierarchical proiler uploads the result of

proiling into database tables?
a. The Proiler component
b. The Analyzer component

c. The shared library component

d. The Data collector component

2. The plshprof utility is a SQL utility to generate a HTML proiler report from
proiler tables in the database.
a. True

b. False

3. Suppose that you are using Oracle 11g Release 2 express edition and you
issue the following command:

ALTER SESSION SET PLSQL_WARNINGS = 'ENABLE:ALL'

/

Session altered.

ALTER FUNCTION FUNC COMPILE PLSQL_DEBUG=TRUE

/

Function altered.

Proiling and Tracing PL/SQL Code

[362]

Determine the output of the following SELECT statement

SELECT * FROM USER_ERRRORS

/

a. No output

b. PLW-06015: parameter PLSQL_DEBUG is deprecated; use
PLSQL_OPTIMIZE_LEVEL = 1

c. PLW-06013: deprecated parameter PLSQL_DEBUG forces
PLSQL_ OPTIMIZE_LEVEL <= 1

d. Both b and c

4. Identify the trace log tables:

a. PLSQL_TRACE

b. PLSQL_TRACE_ACTIONS

c. PLSQL_TRACE_EVENTS

d. PLSQL_TRACE_INFO

5. Identify the correct trace level combination from the following options

a. DBMS_TRACE.SET_PLSQL_TRACE

 (DBMS_TRACE.TRACE_ALL_CALLS+DBMS_TRACE.TRACE_ALL_

EXCEPTIONS);

b. DBMS_TRACE.SET_PLSQL_TRACE

 (DBMS_TRACE.TRACE_ALL_SQL+DBMS_TRACE.TRACE_ALL_

EXCEPTIONS);

c. DBMS_TRACE.SET_PLSQL_TRACE

 (DBMS_TRACE.TRACE_ALL_LINES+DBMS_TRACE.TRACE_PAUSE);

d. DBMS_TRACE.SET_PLSQL_TRACE

 (DBMS_TRACE.TRACE_ALL_EXCEPTIONS+DBMS_TRACE.TRACE_STOP);

6. From the following options, choose the correct statements about the
plshprof utility:

a. It is a command line utility.

b. It generates the HTML reports from the raw proiler data.
c. It is a SQL command to load the raw proiler data into proiler log tables.
d. The utility was available with DBMS_PROFILER.

Chapter 11

[363]

7. You issue the following command to analyze the proiler output:
begin

:r := dbms_hprof.analyze(

 location=> 'DIR',

 filename=> 'xyz.trc',

 trace => '"FUNC1"."FUNC2"."FUNC3"'

);

end;

Choose the correct option:

a. The Analyzer component cannot trace multiple subprograms.

b. The Analyzer component can trace only text (.txt) iles.
c. The Analyzer component analyzes the raw proiler data in xyz.trc and

loads the data into proiler tables.
d. The trace ile can contain proile information of only one subprogram.

8. The max_depth parameter speciied the limit of recursive calls in
START_PROFILING.

a. True

b. False

Safeguarding PL/SQL Code

against SQL Injection Attacks
Oracle database is, undoubtedly, the uncrowned monarch of "Information Business"
across the globe. Though it has narrowed the gap between the expectations and
the potential, the question, "Is my information secure?" still hovers the DBMS
philosophies. We often discuss the vectors of language strength, performance,
storage, and data security. But code vulnerability and security share equal stake in
data security. Nevertheless, the strength of SQL and PL/SQL is unquestionable, but
vulnerable code writing might motivate a hacker to smuggle through the code and
perform vicious manipulations in the data.

In this chapter, we will expand our bandwidth to understand PL/SQL code security.
We will understand how "loose code writing" can encompass the code base injection
and hence, the data. We will cover the following topics:

•	 SQL injection

	° Introduction and understanding

•	 Immunizing SQL injection attacks

	° Reducing the attack surface

	° Avoiding dynamic SQL

	° Using Bind argument

	° Sanitizing inputs with DBMS_ASSERT

•	 Testing the code against the SQL injection laws

Safeguarding PL/SQL Code against SQL Injection Attacks

[366]

SQL injection—an introduction
SQL injection is a database intrusion that occurs when an unauthorized "malicious"
user hacks the PL/SQL code and draws unintended access to the database. Once the
code has been cracked, the malicious user can pull out conidential information from
the database. There can be many more hazardous consequences of code injection.

In 1998, Rain Forest Puppy (RFP) was the irst to identify the "technology
vulnerabilities" in his paper "NT Web Technology Vulnerabilities" for "Phrack
54". Later, the injective techniques were studied by many technology experts and
evangelists to chalk out the best practices of code writing to dilute such acts. Till
date, many application exploitation cases have been registered on account of code
injection. For reference, check out http://www.computerworld.com.au/index.
php/id;683627551. The applications working with personal information or inancial
data are more prone to injective attacks.

SQL injection—an overview
In the past, the reason for SQL injection was the vulnerability in the middleware—
the layer which lies between the data and the client. Unfortunately, it victimizes most
of the applications. The middleware layer acts as a communicating interface between
the data and the client. The fact that the inputs received from the client acts as the
hacker's weapon in major cases is undeniable. However, the code base can sustain
such attacks and immunize any chances of SQL injection. Certain penetrable areas
have been identiied in PL/SQL code developments which can be improvised to
safeguard the application against the smuggling attacks. The code sections which are
best candidates of attack are:

•	 PL/SQL subprogram executed with owner's execution rights

•	 Dynamic SQL using direct inputs in the programs

•	 Non-sanitized inputs from the client

Hackers can employ a variety of techniques to hit upon penetrable code in an
application. A serious injective attack can lead to the leakage of conidential
information, unethical data manipulations, or even alteration in user access
and the database state.

Let us check out a simple example of code injection.

Chapter 12

[367]

The salary of an employee is highly conidential in an organization. Suppose a
company's inance team uses a P_DISPLAY_SAL procedure to display the salary
of all employees as a speciic designation.

/*Connect to ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Enable the SERVEROUTPUT to display the messages*/

SET SERVEROUTPUT ON

/*Create a procedure*/

CREATE OR REPLACE PROCEDURE P_GET_EMP_SAL (P_JOB VARCHAR2)

IS

/*Declare a ref cursor and local variables*/

 TYPE C IS REF CURSOR;

 CUR_EMP C;

 L_ENAME VARCHAR2(100);

 L_SAL NUMBER;

 L_STMT VARCHAR2(4000);

BEGIN

/*Open the ref cursor for a Dynamic SELECT statement*/

 L_STMT := 'SELECT ename, sal

 FROM employees

 WHERE JOB = '''||P_JOB||'''';

 OPEN CUR_EMP FOR L_STMT;

 LOOP

/*Fetch the result set and print the result set*/

 FETCH CUR_EMP INTO L_ENAME, L_SAL;

 EXIT WHEN CUR_EMP%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(RPAD(L_ENAME,6,' ')||'--'||L_SAL);

 END LOOP;

 CLOSE CUR_EMP;

END;

/

Procedure created.

Safeguarding PL/SQL Code against SQL Injection Attacks

[368]

The inance team uses the preceding procedure honestly to display the salaries of all
salesmen as follows:

/*Testing the procedure for SALESMAN*/

EXEC P_GET_EMP_SAL ('SALESMAN')

ALLEN --2000

WARD --1650

MARTIN--1650

TURNER--1900

PL/SQL procedure successfully completed.

Now, we will attack the code with a malicious input and pull out the salary details of
all the employees:

/*Testing the procedure with malicious input*/

EXEC P_GET_EMP_SAL ('XXX'' OR ''1''=''1')

SMITH --9200

ALLEN --2000

WARD --1650

JONES --3375

MARTIN--1650

BLAKE --3250

CLARK --2850

SCOTT --3400

KING --5400

TURNER--1900

ADAMS --1500

JAMES --1350

FORD --3400

MILLER--1700

PL/SQL procedure successfully completed.

Observe the impact of SQL injection. A hacker can get access to the salary
information of all the employees in the organization. An unauthenticated string
input is concatenated with a "Always True" condition for unintended execution of
a dynamic SQL. Applications, where client input is required to invoke an Oracle
subprogram, run a high risk of code injection.

Chapter 12

[369]

Types of SQL injection attacks
Based on the injection attack type and its impact analysis, the SQL injection attack
can be classiied into two categories:

•	 First-order attack: When the code attack is done from the client inputs to
alter the objective of the invoked Oracle subprogram, the degree of attack is
"one". As an impact of the attack, the data may lose its conidentiality due to
unauthorized access by the hacker.

•	 Second-order attack: When the attack performs a different activity from the
ongoing system activity, the attack comes under second-order attack.

The categories in the preceding list are just a broad categorization of the hacker's
activities. Apart from these categories, the hackers can employ different techniques
"blindly", resulting in the malfunctioning of the application.

The following diagram branches the impacts of SQL injection:

Leakage of

confidential data

Manipulate

database services

Unintentded Data

manipulation
Alter database

state

SQL

injection

Preventing SQL injection attacks
SQL injection is a malicious practice, not a bug. Applications cannot be completely
shielded against SQL injection but can be immunized against such acts. The code
base development should take care to adopt the best practices which can evade the
possibilities of code attack.

Let us briely cover some of the precautionary measures which minimize
injection attacks:

•	 Avoid dynamic SQL: Using dynamic SQL with "built up" inputs, they
easily fell prey to injection attacks. Embedding dynamic SQLs within the
programs must be avoided where static SQLs can be substituted. Static SQL
must be used if all the query identiiers are known at the time of the code
development. Otherwise, the dynamic SQL must use sanitized inputs or bind
arguments to discourage the hackers from breaking through the code.

Safeguarding PL/SQL Code against SQL Injection Attacks

[370]

•	 Monitor user privileges to reduce the attack surface: A user must enjoy only
the access for which he is authorized as per his role. Irrelevant and excess
privileges must be revoked to reduce the access perimeter of a user.

In addition, the PL/SQL subprograms must be invoked by the invoker's
rights and not the owner's or the creator's rights.

•	 Use bind arguments: The dynamic SQLs seeking inputs must make use
of the bind arguments. It is a highly recommended programming tip to
reduce the injective attacks on the code. It reduces the possibility of breaking
through the code by providing concatenated inputs. Besides shielding
against the code attack, bind arguments also improve code performance. It
is because the usage of bind variables in a query avoids hard parsing and it
pushes the Oracle server to reuse the execution plans for the SQL queries.

•	 Sanitize client inputs with DBMS_ASSERT: The inputs from the client
must be veriied before using them in the program logic. The DBMS_ASSERT
package provides niche subprograms to validate the inputs from the
application layer.

Immunizing SQL injection attacks
We will discuss the ways to immunize code against SQL injection in detail. Besides
the ways which are listed above, we will discuss some additional tricks too, to reduce
SQL injection attacks.

Reducing the attack's surface
Reducing the attack's surface is one of the preventive measures that are proactively
used to ight the SQL injection attacks. It aims to minimize the area of operation and
visibility of the hackers by controlling the privileges and execution rights of a user
on the accessible subprograms. The technique is helpful when a user plays a deined
role in an application but is still bestowed with a lot more irrelevant privileges from
the admin. The attack perimeter can be reduced by:

•	 Controlling the user privileges

•	 Creating the program units with invoker's rights

Chapter 12

[371]

Controlling user privileges
The DBA must keep a hawk eye on the roles of the users in the application to prevent
any malicious motivation. The availability of additional spare privileges might end
up in misuse and, hence, might threaten the database security. The DBA must revoke
irrelevant privileges from the user. For example, a user, UREP, plays the role of a
report generator in a team. As per his role, he must have only the SELECT privilege
on the tables; he should not have rights to perform any transaction. The DBA must
revoke the DML privileges:

SQL> REVOKE INSERT, UPDATE, DELETE ON EMPLOYEES FROM UREP

/

Revoke succeeded.

Besides controlling the user privileges, the client-based application must intelligently
handle the exposing of the database APIs and the required inputs. The end user
interfaces must use only driving APIs which require user input. The user inputs
should be treated with their actual data types instead of type casts.

Invoker's and deiner's rights
As per the default behavior of Oracle, a subprogram is executed by its owner's or
deiner's rights.

Suppose a user A created a procedure P to insert sales data in the SALES table. The
user A grants the EXECUTE privilege on procedure P to another user B, who has no
such privilege to insert data into the SALES table. The user B executes the procedure
P. Will it be executed successfully? Of course, it will execute because the user B
executes the procedure P with its owner's rights which have the privilege to create
sales data. This implies that the deiners' rights not only offer subprogram execution
privileges but also share privileges on the objects which are referenced inside the
subprogram body.

This default behavior can become chaotic, if wrongly used. An attacker can get
unauthorized access to an API, which can be used vindictively. In such cases, the
subprogram invokers' rights must override the subprogram deiners' rights. The
AUTHID CURRENT_USER clause is used to override the invokers' rights over the
deiners' rights.

We will conduct a small case study to understand the fact that a user must invoke a
non-owned subprogram at the cost of his owned rights.

Safeguarding PL/SQL Code against SQL Injection Attacks

[372]

We create a procedure to modify the default tablespace of a user in SYS. Note
that only DBA has the privilege to modify the tablespace of a user. The following
program has been created for demonstration purpose only:

/*Connect as SYSDBA*/

Conn sys/system as SYSDBA

Connected.

/*Enable the SERVEROUTPUT to display the messages*/

SET SERVEROUTPUT ON

/*Create the procedure to alter the tablespace*/

CREATE OR REPLACE PROCEDURE p_mod_tablespace

(P_USERNAME VARCHAR2 DEFAULT NULL,

 P_TABLESPACE VARCHAR2 DEFAULT NULL)

IS

 V_STMT VARCHAR2(500);

BEGIN

/*Dynamically alter the user to modify default tablespace*/

 V_STMT:='ALTER USER '||p_username ||

 ' default tablespace '|| P_TABLESPACE;

/*Execute the dynamic statement*/

 EXECUTE IMMEDIATE v_stmt;

END p_mod_tablespace;

/

Procedure created.

For demonstration purpose, the DBA grants the EXECUTE privilege on the procedure
to the ORADEV user.

/*Grant execute on the procedure to ORADEV*/

SQL> GRANT execute ON p_mod_tablespace TO ORADEV

/

Grant succeeded.

Verify that the ORADEV user doesn't has suficient privilege to modify the tablespace
of a user:

/*Connect to ORADEV user*/

SQL> CONN ORADEV/ORADEV

Connected.

Chapter 12

[373]

/*Verify the privileges of ORADEV user*/

SQL> ALTER USER nancy DEFAULT TABLESPACE system

/

ALTER USER NANCY DEFAULT TABLESPACE USERS

*

ERROR at line 1:

ORA-01031: insufficient privileges

The ORADEV user executes the P_MOD_TABLESPACE procedure for the
preceding operation:

/*Connect to ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Enable the SERVEROUTPUT to display the messages*/

SET SERVEROUTPUT ON

/*Execute the procedure to modify the default tablespace of user
NANCY*/

SQL> EXEC SYS.P_MOD_TABLESPACE ('NANCY','SYSTEM');

PL/SQL procedure successfully completed.

The procedure executed successfully because it uses the execution privileges of SYS,
not of ORADEV. The ORADEV user enjoys only the invocation privilege.

Verify the change in the tablespace for the NANCY user

/*Connect as DBA*/

Conn sys/system as sysdba

Connected.

/*Check the default tablespace of NANCY*/

SELECT username, default_tablespace

FROM dba_users

WHERE username='NANCY'

/

USERNAME DEFAULT_TABLESPACE

------------------------------ --------------------

NANCY SYSTEM

Notice that a user can perform unauthorized activities as he executes the subprogram
with the deiner's rights. The DBA must realize the unintentional attacks resulting in
the modiication of important information.

Safeguarding PL/SQL Code against SQL Injection Attacks

[374]

Let us recreate the P_MOD_TABLESPACE procedure with the AUTHID CURRENT_USER
option and repeat the steps:

/*Connect as SYSDBA*/

Conn sys/system as SYSDBA

Connected.

/*Enable the SERVEROUTPUT to display the messages*/

SET SERVEROUTPUT ON

/*Create the procedure to alter the tablespace*/

CREATE OR REPLACE PROCEDURE p_mod_tablespace

(P_USERNAME VARCHAR2 DEFAULT NULL,

 P_TABLESPACE VARCHAR2 DEFAULT NULL)

/*Specify the AUTHID CURRENT_USER clause*/

AUTHID CURRENT_USER

IS

 V_STMT VARCHAR2(500);

BEGIN

/*Dynamically alter the user to modify default tablespace*/

 V_STMT:='ALTER USER '||p_username ||

 ' default tablespace '|| P_TABLESPACE;

/*Execute the dynamic statement*/

 EXECUTE IMMEDIATE v_stmt;

END p_mod_tablespace;

/

Procedure created.

Now, the ORADEV user reconnects and invokes the procedure to revert back the
tablespace changes in the last activity:

/*Connect to ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Execute the procedure to modify tablespace of NANCY back to USERS*/

SQL> EXEC SYS.P_MOD_TABLESPACE ('NANCY','USERS');

BEGIN SYS.P_MOD_TABLESPACE ('NANCY','USERS'); END;

*

ERROR at line 1:

ORA-01031: insufficient privileges

ORA-06512: at "SYS.P_MOD_TABLESPACE", line 9

ORA-06512: at line 1

Chapter 12

[375]

Now, the procedure execution fails as it is executed with the privileges of ORADEV
and not of SYS. As ORADEV is a normal user, he cannot update the tablespace
information for a user. Thus, the AUTHID CURRENT_USER clause can be used to
minimize the chances of misusing the privileges.

Avoiding dynamic SQL
Dynamic SQL is the most vulnerable point identiiable in a PL/SQL program. A
dynamically built up SELECT statement, which uses the parameter accepted by the
subprogram, is an open invitation to attackers. In these scenarios, developers must
predict and discover the scalability of the SQL query. If the query identiiers such
as selected columns and table name are known at the runtime, static SQL must be
encouraged. Dynamic SQL must come into the picture only when the complete SQL
query has to be built up during runtime or dynamic DDL statements.

Static SQL statements in the PL/SQL program run rare threat of injection unless the
attacker achieves code writing access. They are performance eficient also as they
reduce the time consumed in identiier substitution and query building.

Let us observe the above recommendations in the following illustration.

The following P_SHOW_DEPT procedure accepts an employee ID and displays the
corresponding department number:

/*Connect to ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Enable the SERVEROUTPUT to display the messages*/

SET SERVEROUTPUT ON

/*Create the procedure*/

CREATE OR REPLACE PROCEDURE P_SHOW_DEPT

(P_ENAME VARCHAR2)

IS

 CUR SYS_REFCURSOR;

 l_ename VARCHAR2(100);

 l_deptno NUMBER;

BEGIN

/*Open ref cursor for a dynamic query using the input parameter*/

 OPEN CUR FOR 'SELECT ename, deptno

 FROM employees

 WHERE ename = '||P_ENAME;

Safeguarding PL/SQL Code against SQL Injection Attacks

[376]

 LOOP

/*Fetch and display the results*/

 FETCH CUR INTO l_ename, l_deptno;

 EXIT WHEN cur%notfound;

 DBMS_OUTPUT.PUT_LINE(RPAD(l_ename,6,' ') ||'--'|| l_deptno);

 END LOOP;

END;

/

Procedure created.

/*Testing the procedure*/

SQL> EXEC p_show_dept ('''KING''');

KING --10

PL/SQL procedure successfully completed.

We will demonstrate how the objective of the procedure got changed due to the
malicious inputs. The procedure was used to display the departments of employees
but out of surprise, it can list the employees' salaries, too. The procedure input
substituting an operand in the WHERE clause predicate is a clear threat to the data.

/*Invoking the procedure for a malicious input*/

EXEC P_SHOW_DEPT ('null UNION SELECT ENAME, SAL FROM EMPLOYEES');

ADAMS --1500

ALLEN --2000

BLAKE --3250

CLARK --2850

FORD --3400

JAMES --1350

JONES --3375

KING --5400

MARTIN--1650

MILLER--1700

SCOTT --3400

SMITH --9200

turner--1900

WARD --1650

PL/SQL procedure successfully completed.

The preceding case demonstrates the vulnerability in dynamic SQLs. Leakage of
conidential data!

Chapter 12

[377]

Now as the query identiiers are already known in this case, we can replace
the dynamic SQL by a static SQL. The P_SHOW_DEPT procedure can be rewritten
as follows:

/*Create the procedure*/

CREATE OR REPLACE PROCEDURE P_SHOW_DEPT

(P_ENAME VARCHAR2)

IS

 CUR SYS_REFCURSOR;

 l_ename VARCHAR2(100);

 l_deptno NUMBER;

BEGIN

/*Open ref cursor for a static query using the input parameter*/

 OPEN CUR FOR SELECT ename, deptno

 FROM employees

 WHERE ename = P_ENAME;

 LOOP

/*Fetch and display the results*/

 FETCH CUR INTO l_ename, l_deptno;

 EXIT WHEN cur%notfound;

 DBMS_OUTPUT.PUT_LINE(RPAD(l_ename,6,' ') ||'--'|| l_deptno);

 END LOOP;

END;

/

Procedure created.

/*Testing the procedure*/

SQL> EXEC p_show_dept ('KING');

KING --10

PL/SQL procedure successfully completed.

In the preceding code demonstration, notice that the query framing in a PL/
SQL block minimizes the possibility of injection. In a dynamically framed SQL
statement as a string, incoming parameters leave an open loop hole to the string
where malicious inputs can low in to deform the query. But static SQL queries
use the input variables directly in the query predicates, which lowers down the
probability of undesired deformation of the query. Now when we attempt to inject
the procedure call again with the same input, the static SQL doesn't return any
result, thus guarding the procedure against injective attacks.

/*Invoking the procedure for a malicious input*/

EXEC P_SHOW_DEPT ('null UNION SELECT ENAME, SAL FROM EMPLOYEES');

PL/SQL procedure successfully completed.

Safeguarding PL/SQL Code against SQL Injection Attacks

[378]

Another recommendation to immunize against attacks in dynamic SQLs is the usage
of bind arguments. Dynamic SQLs must be implemented with bind arguments. We
will see how to work with bind arguments in the next section.

Bind arguments
Bind arguments act as the placeholder in the dynamic SQL query. They can be
substituted with actual arguments during query building at runtime. They
minimize code injection attacks and yield good performance, too.

Dynamic SQL using concatenated inputs can substitute the concatenated parameter
with a placeholder in the dynamic SQL or dynamic PL/SQL. At runtime, the
placeholder can be replaced with an actual argument through the USING clause in the
same positional order. Bind variables can successfully substitute the placeholders for
the value operands in the WHERE clause.

Let us check the usage of bind arguments in our earlier example. We will recreate
the P_SHOW_DEPT procedure using dynamic SQL and bind arguments. We will
replace the parameter substitution in the dynamic SQL with a placeholder or
bind variable (:bind).

/*Connect to ORADEV user*/

Conn ORADEV/ORADEV

Connected.

/*Enable the SERVEROUTPUT to display the messages*/

SET SERVEROUTPUT ON

/*Create the procedure*/

CREATE OR REPLACE PROCEDURE P_SHOW_DEPT

(P_ENAME VARCHAR2)

IS

 CUR SYS_REFCURSOR;

 l_ename VARCHAR2(100);

 l_deptno NUMBER;

BEGIN

/*Open ref cursor for a dynamic query using a bind variable*/

 OPEN CUR FOR 'SELECT ename, deptno

 FROM employees

 WHERE ename = :bind' USING P_ENAME;

 LOOP

Chapter 12

[379]

/*Fetch and display the results*/

 FETCH CUR INTO l_ename, l_deptno;

 EXIT WHEN cur%notfound;

 DBMS_OUTPUT.PUT_LINE(l_ename ||'--'|| l_deptno);

 END LOOP;

END;

/

Procedure created.

/*Testing the procedure*/

SQL> EXEC p_show_dept ('KING');

KING--10

PL/SQL procedure successfully completed.

Now we will test the procedure against the malicious input:

/*Invoking the procedure for a malicious input*/

SQL> EXEC P_SHOW_DEPT ('null UNION SELECT ENAME, SAL FROM EMPLOYEES');

PL/SQL procedure successfully completed.

Once again, no result is returned. It is because the placeholder in the dynamic SQL
substitutes a single string value. Here, a single string value is treated as null UNION
SELECT ENAME, SAL FROM EMPLOYEES, which doesn't exists in the database.

Bind variables can be used as a placeholder in the dynamic SQL to substitute all
types of inputs. It can be query identiiers such as columns or table names, keywords,
and operands (like the one we just saw above). They are the preferred choice when
the dynamic query uses the IN list or the LIKE operator.

As a limitation, bind arguments cannot substitute Oracle identiiers and keywords.
Bind variables cannot be used in DDL statements and, also, they cannot substitute
identiiers or keywords in a dynamic SELECT query.

Sanitizing inputs using DBMS_ASSERT
The inputs lowing from the client are another threat to code attacks. The string
inputs to the dynamic SQL which do not use bind variables must be properly
veriied for purity and sanity before using them in the dynamic build of a SQL
query. Frankly, it is the responsibility of both the client layer and middleware
layer to authenticate the inputs. The client can programmatically perform the basic
validation. A second layer check must be set up at the database side to sanitize the
inputs supplied from the client.

Safeguarding PL/SQL Code against SQL Injection Attacks

[380]

Input sanitization becomes a mandatory activity when the dynamic SQL requires the
substitution of Oracle identiiers.

The DBMS_ASSERT package
Oracle 10g release 2 introduced the DBMS_ASSERT package to sanitize the user
inputs. The inputs from the application layer can be supplied to the DBMS_ASSERT
subprograms and veriied before they are employed in the program.

The DBMS_ASSERT package is owned by SYS and contains seven subprograms. These
subprograms are listed in the following table:

Subprograms Description

ENQUOTE_LITERAL function Encloses a string literal within single quotes

ENQUOTE_NAME function Encloses the input string in double quotes

NOOP functions Overloaded function returns the value without any
checking; does no operation

QUALIFIED_SQL_NAME function Veriies that the input string is a qualiied SQL name
SCHEMA_NAME function Veriies that the input string is an existing schema

name

SIMPLE_SQL_NAME function Veriies that the input string is a simple SQL name
SQL_OBJECT_NAME function Veriies that the input parameter string is a qualiied

SQL identiier of an existing SQL object

The most signiicant feature of DBMS_ASSERT is that most of its subprograms return
the same input parameter as the output, after checking its properties. If the input
fails expected "property", the VALUE_ERROR exception is raised.

Let us check the working of the subprograms.

The ENQUOTE_LITERAL subprogram can be used to sanitize the string inputs by
enclosing them in single quotes. This function eliminates the possibility of leaking
information by cladding an additional query using the UNION set operator:

/*Demonstrate the use of ENQUOTE_LITERAL*/

SELECT DBMS_ASSERT.ENQUOTE_LITERAL('KING')

FROM DUAL

/

DBMS_ASSERT.ENQUOTE_LITERAL('KING')

'KING'

Chapter 12

[381]

The ENQUOTE_NAME can be used to enclose Oracle identiiers in double quotes and
verify quoted identiiers.

/*Demonstrate the use of ENQUOTE_NAME*/

SELECT DBMS_ASSERT.ENQUOTE_NAME('KING')

FROM DUAL

/

DBMS_ASSERT.ENQUOTE_NAME('KING')

"KING"

The SCHEMA_NAME function validates the current schema name. This eliminates the
possibility of accessing other schema objects:

/*Demonstrate the use of SCHEMA_NAME*/

SELECT DBMS_ASSERT.SCHEMA_NAME('PLSQL')

from dual

/

SELECT DBMS_ASSERT.SCHEMA_NAME('PLSQL')

 *

ERROR at line 1:

ORA-44001: invalid schema

ORA-06512: at "SYS.DBMS_ASSERT", line 243

SELECT DBMS_ASSERT.SCHEMA_NAME('ORADEV')

from dual

/

DBMS_ASSERT.SCHEMA_NAME('ORADEV')

ORADEV

Other subprograms—SIMPLE_SQL_NAME and SQL_OBJECT_NAME—are also of great
relevance to validate the schema object names.

Identiier formatting and veriication process
Oracle identiiers can be used in multiple contexts with different behaviors. This
study is important to ensure the correct usage of an appropriate subprogram from
a DBMS_ASSERT subprogram list. An identiier can be a quoted identiier, unquoted
identiier, and a literal. All three contexts are entirely different from each other.
Based on the context of the identiier in the scenario, the veriication algorithm must
be selected for sanitization.

Safeguarding PL/SQL Code against SQL Injection Attacks

[382]

We will check out for the identiier contexts. The different contexts are listed
as follows:

•	 Unquoted identiier: This identiier obeys the naming convention of
Oracle—it must begin with a letter followed by numbers or a set of deined
special characters (_).

/*Use (employees) as unquoted identifier*/

SELECT * FROM employees

/

In the preceding query, the employees table acts as an unquoted identiier.
•	 Quoted identiier: It is enclosed with double quotes and follows no naming

convention. It can start with a number (optionally) and can include any sort
of characters.

/*Use (employees) as quoted identifier*/

SELECT * FROM "employees"

/

In the preceding query, the quoted identiier "employees" is different from
the unquoted indentiier employees. Quoted identiiers can be used as a
method of code attack.

•	 Literal: It can be any ixed value used in the SQL query.
/*Demonstrate a literal*/

SELECT * FROM employees WHERE ename = 'KING'

/

In the preceding query, 'KING' is a literal.

/*Use (employees) as a literal*/

SELECT * FROM user_tables WHERE table_name='EMPLOYEES'

/

Note that the EMPLOYEES table (identiier) acts as a literal in the
preceding query.

Appropriate usage of veriication algorithm is necessary to ensure the sanity of the
identiier. We saw that an identiier can be any of the following:

•	 Basic: This identiier is always an unquoted identiier. As the Basic identiier
is built up of a deined set of characters, it requires less formatting and is
deemed to be sanitized.

•	 Simple: This identiier may or may not be a quoted identiier. The
SIMPLE_SQL_NAME function can be used to verify its purity and sanity.
It checks only the admissible character sets and not the length of
the identiier.

Chapter 12

[383]

If the identiier is unquoted, the function checks for the naming convention
as applied to Basic identiier (allowed character set is A-Z, a-z, 0-9, $, #,
and _).

If the identiier is quoted, it can include any character set within the
double quotes.

Check out the following illustration:

/*Demonstrate verification algorithm for Simple identifier using
quoted identifier*/

SQL> select DBMS_ASSERT.SIMPLE_SQL_NAME('"1select"')

 from dual

 /

DBMS_ASSERT.SIMPLE_SQL_NAME('"1SELECT"')

--

"1select"

/*Demonstrate verification algorithm for Simple identifier using
unquoted identifier*/

SQL> select DBMS_ASSERT.SIMPLE_SQL_NAME('1select')

 from dual

 /

select DBMS_ASSERT.SIMPLE_SQL_NAME('1select')

 *

ERROR at line 1:

ORA-44003: invalid SQL name

ORA-06512: at "SYS.DBMS_ASSERT", line 146

•	 Qualiied: This identiier is mainly used for the sanity check of database
links, but behaves in a similar way to simple SQL names in most of cases. It
can include more than one simple SQL name as a schema name, object and a
DB link, too. They can follow any one of the following syntax:

<local qualified name> ::= <simple name> {'.' <simple name>}

<database link name> ::= <local qualified name> ['@' <connection
string>]

<connection string> ::= <simple name>

<qualified name> ::= <local qualified name> ['@' <database link
name>]

Check out the difference between SIMPLE_SQL_NAME and QUALIFIED_SQL_NAME in
the following illustration:

/*Demonstrate verification algorithm for Qualified SQL identifier
using SIMPLE_SQL_NAME*/

SQL> select dbms_assert.simple_sql_name('schema.obj@dblink')

Safeguarding PL/SQL Code against SQL Injection Attacks

[384]

 from dual

 /

select dbms_assert.simple_sql_name('schema.obj@dblink') from dual

 *

ERROR at line 1:

ORA-44003: invalid SQL name

ORA-06512: at "SYS.DBMS_ASSERT", line 146

/*Demonstrate verification algorithm for Qualified SQL identifier
using QUALIFIED_SQL_NAME*/

SQL> select dbms_assert.qualified_sql_name('schema.obj@dblink')

 from dual

 /

DBMS_ASSERT.QUALIFIED_SQL_NAME('SCHEMA.OBJ@DBLINK')

schema.obj@dblink

The behavior of quoted and unquoted qualiied SQL names remains same as we
discussed earlier.

DBMS_ASSERT—usage guidelines
The best practices to use the DBMS_ASSERT validation package are as follows:

•	 Unnecessary uppercase conversion of identiiers must be avoided.
	° Case 1: The following statement is not the correct usage of basic

unquoted identiiers:
 BAD_USAGE := sys.dbms_assert.SCHEMA_NAME(UPPER(MY_SCHEMA));

As the SCHEMA_NAME function is case sensitive, the quoted inputs must be
provided to check their sanity. Explicit transformation of the
identiiers must be avoided to ensure the accuracy of the result. If the input
schema name is not a valid schema, Oracle raises a ORA-44001: invalid
schema exception.

	° Case 2: The following statement is a better practice to use the
unquoted identiier:

 BETTER_USAGE := sys.dbms_assert.SCHEMA_NAME(MY_SCHEMA);

	° Case 3: The best way to avoid any possibility of bad input is
demonstrated in the following statement. The schema name has been
unquoted by setting off the ENQUOTE property:

 BEST_USAGE := sys.dbms_assert.ENQUOTE_NAME(

 sys.dbms_assert.SCHEMA_NAME(MY_SCHEMA),FALSE);

Chapter 12

[385]

•	 Escape quotation marks when using ENQUOTE_NAME—avoid unnecessary
quoting of identiiers when using ENQUOTE_NAME. Similarly, for
ENQUOTE_LITERAL, single quotes in the input must be prevented.
Note that ENQUOTE_NAME must be used with quoted identiiers only.

•	 NULL results from DBMS_ASSERT must be ignored. The subprograms
SIMPLE_SQL_NAME, QUALIFIED_SQL_NAME, SCHEMA_NAME, and SQL_OBJECT_
NAME sanitize the identiiers and the results returned are same as the input.
Other subprograms such as NOOP, ENQUOTE_NAME and ENQUOTE_LITERAL can
accept NULL values.

•	 Length validation check must be enforced in addition to the DBMS_ASSERT
veriication algorithms.

•	 Protect all injection prone parameters and code paths.

•	 The DBMS_ASSERT also exists as a public synonym; it is recommended to
make all references to its subprograms by preixing SYS which is the
owning schema.

•	 Make use of DBMS_ASSERT speciic exceptions to identify the actual exception
raised by the bad inputs. The exceptions ORA44001 to ORA44004 are the
DBMS_ASSERT exceptions:

	° ORA44001 stands for sys.dbms_assert.INVALID_SCHEMA_NAME

	° ORA44003 stands for sys.dbms_assert.INVALID_SQL_NAME

	° ORA44002 stands for sys.dbms_assert.INVALID_OBJECT_NAME

	° ORA44004 stands for sys.dbms_assert.QUALIFIED_SQL_NAME

DBMS_ASSERT—limitations
The DBMS_ASSERT package has certain limitations, as follows:

•	 No validation for TNS connection strings

•	 No validation for buffer overlow attacks
•	 It only checks the value property of an input value, it doesn't parse property

of a value as a database identiier
•	 No validation for unprivileged access of objects

Safeguarding PL/SQL Code against SQL Injection Attacks

[386]

Testing the code for SQL injection laws
Until now, we discussed the symptoms and remedies of SQL injection. We
demonstrated the programming recommendations to mitigate the effects of code
injections and smuggles. Assuring code quality and testing play a crucial role in
taking preventive measures against hackers. Code testing resources must adopt a
concrete strategy to discover and hit upon the code vulnerabilities before it invites
an attacker to exploit the database. Now, we will discuss some of the testing
considerations to test the code for SQL injection laws.

Test strategy
A logical and effective test strategy must be employed to discover injection laws. Of
course, there is no magic practice to ooze out all laws in the code.

The usual code reviews are part of static testing while testing the programs with
sample data and inputs come under dynamic testing. These days, static testing has
been absorbed into the development stage where developers, their peers and seniors
review the code. Major syntactical errors, logical issues, code practices, and injection
bugs can be traced at this level. The Dry Run concept can even check multiple
scenarios and ensure bug-free application submission to the quality assurance team.

Reviewing the code
As a reviewer of the code, the irst and foremost step is to check the attack surface.
The code reviewer must measure the exposure of database programs in the client.
In addition, he must check the privilege set available with the database users. Once
these steps are passed with satisfaction, he must get into the code to search for key
vulnerable areas.

In PL/SQL-based applications, always be careful to look for:

•	 Dynamic SQL build ups:

	° EXECUTE IMMEDIATE

	° REF CURSOR queries

	° DBMS_SQL

	° DBMS_SYS_SQL

•	 Check for appropriate usage of bind arguments

•	 Parameter input sanitization

Similarly, in Java or C client architecture, the reviewer must look for dynamic
callable statement preparation.

Chapter 12

[387]

Static code analysis
SQL injection attacks are mostly due to coding unawareness and dynamic SQLs.
Therefore, static code analyzers cannot easily trace the application vulnerability. From
the Oracle documentation, the term "Static Code Analysis" can be deined as follows:

Static code analysis is the analysis of computer software that is performed without
executing programs built from that software. In most cases, the analysis is performed
on some version of the source code and in other cases, some form of the object code.
The term is usually applied to the analysis performed by an automated tool.

It is advisable that such analysis tools should not be considered as the testing
benchmark and conirmatory tools. Instead, they can be used for white box testing
where the application is tested for smooth logical low and program executions for
different nature of input data.

Fuzz tools
Fuzz testing is similar to doing "Bungee jumping" with the code. It is rough testing,
which is not based out on any logic, but meant to measure the security
and scalability of the application. It measures the sustainable degree up of an
application to the bad and malicious inputs. Without any preconception of the
system or program behavior, it uses raw inputs to check the program semantics.
The environment for fuzz testing tools can be made explicitly by modifying the
context values and manipulating the test data.

The bugs reported in fuzz testing may not always be real threats to the application,
but they can be a crucial clue to the vulnerability and injective attacks.

Generating test cases
The last and inal call is the preparation of test cases. Though it is kept aside
very often during the application development, test cases are a crucial stage to
measure the strengths, robustness, and client input validation. Remember the
following points:

•	 Each input from the client must be individually tested. All the remaining
parameters should be kept unchanged while generating a test case for varied
behavior of client input.

•	 The best way to test SQL injection is to provide junk data, concatenated
string inputs, and many more.

•	 Test with varied nature of input; try with object names, identiiers, dummy
names to arrive at a positive conclusion.

Safeguarding PL/SQL Code against SQL Injection Attacks

[388]

Summary
In the chapter, we learned a malicious hacking concept—SQL Injection. We
understood the causes of code attack and its impact on the database. We covered
the techniques to safeguard an application against the injective attacks through
demonstrations and illustrations. At the end of the chapter, we discussed some of
the testing considerations to hit the vulnerable areas in the code.

Practice exercise
1. Which method would you employ to immunize the PL/SQL code against

SQL Injection attacks?

a. Replace Dynamic SQLs with Static SQLs.

b. Replace concatenated inputs in Dynamic SQL with binds arguments.

c. Declare the PL/SQL program to be executed by its invoker's rights.

d. Removing string type parameters from the procedure.

2. Use static SQL to avoid SQL injection when all Oracle identiiers are known
at the time of code execution.

a. True

b. False

3. Choose the impact of SQL injection attacks:

a. Malicious string inputs can extract conidential information.
b. Unauthorized access can drop a database.

c. It can insert ORDER data in EMPLOYEES table.

d. A procedure executed with owners' (SYS) rights can change the password
of a user.

4. Pick the correct strategies to ight against of SQL injection
a. Sanitize the malicious inputs from the application layer with

DBMS_ASSERT.

b. Remove string concatenated inputs from the Oracle subprogram.

c. Dynamic SQL should be removed from the stage.

d. Execute a PL/SQL program with its creator's rights.

Chapter 12

[389]

5. Statistical Code analysis provides an eficient technique to trace application
vulnerability by using ideal and expected parameter values.

a. True

b. False

6. Fuzz tool technique is a harsh and rigorous format of testing which uses raw
inputs and checks a program's sanctity.

a. True

b. False

7. Choose the accomplishments achieved by the DBMS_ASSERT package to
prevent SQL injection?

a. Enclose a given string in single quotes.

b. Enclose a given string in double quotes.

c. Verify a schema object name.

d. Verify a SQL simple and qualiied SQL identiier.

8. Identify the nature of a table name in the following SELECT statement

SELECT TOTAL

FROM "ORDERS"

WHERE ORD_ID = P_ORDID

/

a. Unquoted identiier
b. Quoted identiier
c. Literal

d. Placeholder

9. Which of the following DBMS_ASSERT subprogram modiies the input value?
a. SIMPLE_SQL_NAME

b. ENQUOTE_LITERAL

c. QUALIFIED_SQL_NAME

d. NOOP

Safeguarding PL/SQL Code against SQL Injection Attacks

[390]

10. The code reviews must identify certain vulnerable key areas for SQL
Injection. Select the correct ones from the following list:

a. DBMS_SQL

b. BULK COLLECT

c. EXECUTE IMMEDIATE

d. REF CURSOR

11. The AUTHID CURRENT_USER clause achieves which of the following purposes?

a. Code executes with invoker's rights.

b. Code executes with current logged in user.

c. Eliminates SQL injection vulnerability.

d. Code executes with the creator's rights.

Answers to Practice

Questions

Chapter 1, Overview of PL/SQL
Programming Concepts

Question No. Answer Explanation

1 c Currently, SQL Developer doesn't provide
backup and recovery features. However, it
can be done using a regular database export
from SQL Developer.

2 a, c, and d A function can be called from a SQL expression
only if it doesn't hinder the database state and
purity level.

3 a The ALL_DEPENDENCIES dictionary view
has been iltered by REFERENCED_TYPE and
REFERENCED_OWNER for SYS owned tables and
views.

4 c The local variables are local to the block only.
They cannot be referred outside their native PL/
SQL block.

5 a, b, and d An exception variable cannot be simply declared
and used with RAISE_APPLICATION_ERROR. It
has to be mapped to a self deined error number
using PRAGMA EXCEPTION_INIT, and then
raised through RAISE_APPLICATION_ERROR
with an exception message.

Answers to Practice Questions

[392]

Question No. Answer Explanation

6 a and b A function must return a value using the RETURN
statement while a procedure might return a value
through the OUT parameters.

Standalone subprograms (functions and
procedures) cannot be overloaded. Only the
subprograms declared in a package can be
overloaded.

Both procedures and functions can accept
parameters in either of the two modes— pass by
value and pass by reference.

7 c For implicit cursors, the %FOUND attribute is set
to TRUE, if the SQL statement fetches a minimum
of one record.

Chapter 2, Designing PL/SQL Code
Question No. Answer Explanation

1 c All the cursor attributes, except %ISOPEN,
must be accessed within the cursor execution
cycle. Once the cursor is closed, the cursor
work area is lushed.

2 b and c The use of cursor FOR loops prevents erratic
coding. Fetching the cursor data into a
record reduces the overhead of declaring
block variables.

3 b Implicit cursor attributes hold the value of the
last executed SQL query. Therefore, it must be
referenced just after the SQL query

4 a and b Cursor variables can point to several cursor
objects (cursor work area) in shared memory.
Ref cursor types can be declared in a package
speciication.

5 a A strong ref cursor must mandatorily have
the RETURN type speciication. The RETURN
type can be a table record structure or a
user-deined type.

Appendix

[393]

Question No. Answer Explanation

6 a and b Cursor variables can dynamically point to
different work areas and, hence, different
result sets. The biggest advantage of cursor
variables is their ability to share the pointer
variable amongst the client environments
and other subprograms.

7 b As the OPEN stage of cursor variables has to be
explicitly speciied, it cannot be opened with
the cursor FOR loops.

8 a and d A subtype inherits the complete table
record structure and the NULL property
of its columns.

Chapter 3, Using Collections
Question No. Answer Explanation

1 a and c Associative arrays can have negative integer
subscripts, positive integer subscripts and
string subscripts.

As associative arrays are treated as local arrays,
initialization is not required for them.

2 c Nested tables are an unbounded collection
which can grow dynamically.

3 a Varrays are always dense collections. Sparse
varray doesn't exist.

4 c and d BOOLEAN and NUMBER are not suitable index
types for an associative array.

5 a and c Yes, varray limit can be increased during
runtime using the ALTER TABLE statement.

If all the cells of a varray are populated with
elements, LAST is equal to COUNT. This also
holds true when the varray is empty.

Answers to Practice Questions

[394]

Question No. Answer Explanation

6 b The irst DBMS_OUTPUT prints the irst
element from the default constructor. Once it
is reassigned with a value in the executable
section, the default values are overwritten.

7 a and c Varrays are bounded collections which can
accommodate data maximum up to the
speciied limit.

8 a, b, and c EXISTS doesn't raises any exception.

DELETE cannot be used with varrays.

Chapter 4, Using Advanced Interface
Methods

Question No. Answer Explanation

1 a and c The extproc process is a session speciic
process started by the Oracle listener and loads
the shared library.

2 b External procedure support was introduced
in Oracle 8.

3 a The PL/SQL wrapper containing the call
speciication is dependent on the database
library object.

4 b The TNS service ORACLR_CONNECTION_DATA
connects to the listener with the SID_NAME in
the CONNECT_DATA parameter.

5 b The loadjava utility loads the Java class to a
speciied user in a database.

6 a Java programs are directly supported by
Oracle and do not use the extproc process.

7 c The external function name is case sensitive.
The PL/SQL wrapper must use it exactly in
same case as speciied in the external program.

Appendix

[395]

Chapter 5, Implementing VPD with Fine
Grained Access Control

Question No. Answer Explanation

1 c The policy function returns the predicate as
<Column>=<Value>.

2 b The security policy can be associated to one
and only one schema object.

3 b and c The DBMS_RLS package is a SYS owned built
in package whose public synonym is shared
amongst the users. It is a useful package to
work with policies and policy groups.

4 b There is no such privilege as CREATE_
CONTEXT. It should be the CREATE ANY
CONTEXT privilege. All context metadata is
in either ALL_CONTEXTS or DBA_CONTEXTS.

5 a Context creation followed by the creation of its
trusted package. A policy function is created
for the predicate and the security is attached
for the protection.

6 b Policy groups are created by the collection of
policies under them.

7 b and d Default policy type is Dynamic. Shared static
policy is the one where a static policy can be
shared by multiple database objects. In such
cases, the column appearing in the predicate
must exist in all the tables.

8 c and d Either a DBA or a user with the DBA role can
create and drop an application context. A DBA
can modify certain USERENV attributes, but
not all.

9 a The predicate information returned by the
policy function is retained in SGA until the
query is reparsed. During the parse stage,
the current context information is matched
with the latest. If the value has been changed,
Oracle synchs the context values; otherwise
the old value is retained.

10 a The applicable policy tries to access the
F_JOB_POLICY policy function which
doesn't exist in the ORADEV schema.

Answers to Practice Questions

[396]

Chapter 6, Working with Large Objects
Question No. Answer Explanation

1 a LOBs can appear as a database column or a
user deined object type attribute.

2 b LOB type parameters can exist.

3 a LOB data greater than 4 K is stored out of
line with the current row. Mandatorily, it's a
different LOB segment which may or may
not be in the same tablespace.

4 b The BLOB column must be initialized with
EMPTY_BLOB()

5 c The constructor methods EMPTY_CLOB() and
EMPTY_BLOB() are used to initialize NULL
and NOT NULL LOB types.

6 b and c FILEOPEN works only with BFILEs.

7 b Temporary LOBs are session speciic.
8 c and d BFILE is a read-only type. The iles accessed

through the BFILE locator open in read-only
mode. They cannot be manipulated in any
way during the BFILE access.

9 b and d Temporary LOB is always an internal LOB
which is used for manipulative actions in the
LOB columns within a block.

10 c The user must have read/write privilege on
the directory to access the iles contained in it.

11 b A LONG column can be migrated to a LOB
column using the following syntax:

ALTER TABLE [<schema>.]<table_
name>

 MODIFY (<long_column_name> {
CLOB | BLOB | NCLOB }

 [DEFAULT <default_value>])
[LOB_storage_clause]

Note that a LONG column can be migrated to
CLOB or NCLOB while a LONG RAW column
can be modiied to BLOB only.

Appendix

[397]

Question No. Answer Explanation

12 b The BFILENAME function is used to return
the LOB locator of a ile which is located
externally. It can be used for internal LOBs
as well as external LOBs.

13 b and d SecureFile is a new feature in Oracle 11g to
store large objects with enhanced security,
storage, and performance. Older LOBs may
still exist as BasicFiles and can be migrated to
SecureFiles.

14 a and c The CREATE TABLE script executes
successfully. The table and LOB are created in
the default user tablespace. Oracle implicitly
generates the LOB segment and LOB index.
However, the segments are not created until
the data has been inserted in the table.

Chapter 7, Using SecureFile LOBs
Question No. Answer Explanation

1 a, c, and d SecureFiles can reside only on ASSM
tablespaces. They are free from LOB index
contention and high water mark contention.
Up to 4 MB, SecureFile LOB data can be
cached under the WGC component of the
buffer cache.

2 a and d Being part of the advanced compression,
compression in SecureFile doesn't affect
performance. It is intelligently handled by
the LOB manager to perceive the impact of
compression on LOB data.

3 b Compression, deduplication, and encryption
are mutually exclusive features of a
SecureFile.

4 b Table compression has nothing to do with
SecureFile compression.

Answers to Practice Questions

[398]

Question No. Answer Explanation

5 a and b KEEP_DUPLICATES is the default option.
The feature doesn't affect performance as the
secure hash matching is a transparent process
in the server.

6 c and d The encryption keys are stored in the wallet
directory. An encrypted SecureFile column
cannot be modiied for the encryption
algorithm.

7 b Online redeinition works with materialized
views to get the latest snapshot of the source
table, so that the ongoing data changes are
not lost during redeinition processes.

Chapter 8, Compiling and Tuning to
Improve Performance

Question No. Answer Explanation

1 a and b Interpreted compilation mode is preferred
when a program unit is in development stage
and involves SQL statement processing.

2 c and d The Real Native compilation method removes
the dependency on C compiler to generate
DLL for the program unit. Instead, the native
DLLs are stored in the database dictionary
itself. As the DLLs are stored in the dictionary,
they can be a part of the normal backup and
recovery.

3 b The PLSQL_OPTIMIZE_LEVEL value set to
3 strictly inlines all the subprograms at high
priority.

Appendix

[399]

Question No. Answer Explanation

4 b and c The PLSQL_CODE_TYPE value speciied
during recompilation of a program overrides
the current system or session settings. Its
default value is INTERPRETED and it must
be updated in the spfile instance after
the database upgrade process. In real native
mode, the libraries are stored in the SYSTEM
tablespace.

5 a and c Usage of BULK COLLECT can pull multi-
row data from the database in a single
attempt, thus reducing context switches.
PLS_INTEGER is a preferred data type in
arithmetic calculations.

6 d Inlining of subprograms is only supported at
optimization level greater than one.

7 b and c The F_ADD local function would be called
inline because its call has been marked
inline using PRAGMA INLINE. It might also
be considered for inlining as the PLSQL_
OPTIMIZE_LEVEL value is 2.

8 b The DLLs generated from the Real Native
compilation are stored in the SYSTEM
tablespace.

9 a and d The NOT NULL data types add overhead to
check every assignment for nullity. L_SUM
must be declared as

L_SUM NATURAL;

Usage of appropriate data types to avoid
implicit typecasting improves performance.
L_ID must be declared as NUMBER.

10 a, c, and d PRAGMA INLINE works for PLSQL_
OPTIMIZE_LEVEL values 2 and 3. At level
1, the Oracle optimizer doesn't consider
any subprogram for inlining. At level 3, all
subprograms are strictly called for inline.
However, inlining of a subprogram can
be set off by specifying PRAGMA INLINE
(<Function name>,'NO').

Answers to Practice Questions

[400]

Chapter 9, Caching to Improve
Performance

Question No. Answer Explanation

1 a The database server would cache the query
results only when the user explicitly allocates
the cache memory at the server and the
caching feature is enabled. In the given
scenario, caching is disabled as the value of the
RESULT_CACHE_MAX_SIZE parameter is 0.

2 b and d In automatic result caching, the RESULT_
CACHE hint is ineffective as the server
implicitly caches results of all SQL queries.

3 a When the dependent table data gets updated,
all the cached results get invalidated.

4 b The cached results are stored at the server and
are sharable across the sessions of the user.

5 b PL/SQL result cache feature is operative only
upon the functions which are declared as
standalone or local to a stored subprogram or
within a package.

6 a The RELIES_ON clause has been deprecated in

Oracle 11g R2.

7 b and c The server doesn't cache the results of the
queries which use sequence or any pseudo
column (here SYSDATE).

8 b PL/SQL function result cache works on
server-side memory infrastructure which is
the same for both SQL and PL/SQL. Only
the results of functions can be cached at the
server. The function must not be a pipelined
one or the one declared with invoker's rights.
It should accept parameters in the pass by
reference mode of primitive data types only.

9 a and b The valid values are PUBLISHED, NEW,
INVALID, BYPASS, and EXPIRED.

10 a, b, c, and d The V$RESULT_CACHE_STATISTICS
dynamic performance view stores the latest
cache memory statistics.

Appendix

[401]

Chapter 10, Analyzing PL/SQL Code
Question No. Answer Explanation

1 b The ALL_ARGUMENTS dictionary view captures
the information about the subprogram
arguments.

2 d Server places the identiier information in the
SYSAUX tablespace.

3 a The parameter values used in the subprograms
of the DBMS_METADATA package are case
sensitive.

4 b The FORMAT_CALL_STACK forms the stack of
all program units traversed by the server.

5 b and c The DBMS_METADATA package can generate
reports for table grants, object dependencies
and DDL of given objects in a schema.

6 b The PL/Scope tool can store the identiier data
in the SYSAUX tablespace only.

7 a and b For tables and views, the DDL script can be
extracted without a storage clause by setting the
STORAGE parameter to FALSE. Similarly, views
scripts can be made force free by setting the
FORCE parameter to FALSE.

Chapter 11, Proiling and Tracing
PL/SQL Code

Question No. Answer Explanation

1 b The Analyzer component interprets the raw
proiler data and loads into the database tables.

2 b The plshprof is a command-line utility to
generate HTML reports from raw proiler
output.

3 d The PLSQL_DEBUG parameter has been

deprecated starting from Oracle 11g.

Answers to Practice Questions

[402]

Question No. Answer Explanation

4 c The $ORACLE_HOME\rdbms\admin\
tracetab.sql script creates the trace log
tables—PLSQL_TRACE_RUNS and PLSQL_
TRACE_EVENTS.

5 c and d The trace control levels cannot be used in
combination with the other trace levels.

6 a and b The plshprof utility is a command-line tool to
convert raw proiler data into HTML reports.

7 c The Analyzer component can trace multiple
subprograms proiled into one trace ile.

8 a The max_depth parameter can be speciied
to limit the recursive levels in START_
PROFILING.

Chapter 12, Safeguarding PL/SQL Code
against SQL Injection Attacks

Question No. Answer Explanation

1 a, b, and c Dynamic SQL is more prone to injective
attacks. Static SQL must be preferred in major
cases. In other cases, dynamic SQL must use
bind variables.

2 a If the SQL query identiiers are ixed for all the
executions of a subprogram, static SQL can be
used in the program.

3 a and d SQL injection can lead to the leakage of
conidential information and perform
unauthorized activities.

4 a The inputs from the application layer must
be veriied for purity before using in the
application.

5 b Statistical code analysis is used only for
logical low of the code but doesn't provide
conirmation on the code vulnerability.

Appendix

[403]

Question No. Answer Explanation

6 a Fuzzing is a rough testing method to measure
the resistivity and scalability of the program,
which can discover the vulnerable areas of
the code.

7 c and d The DBMS_ASSERT.SQL_OBJECT_NAME
subprogram validates the object contained in
the current schema. The SIMPLE_SQL_NAME
and QUALIFIED_SQL_NAME functions are used
to verify the sanity of the SQL names.

8 b The quoted identiier is used in queries
enclosed within double quotes. Its meaning
in the context is entirely different from the
unquoted identiier.

9 b ENQUOTE_LITERAL encloses a given string
with single quotes.

10 a, c, and d The Oracle keywords which implement
dynamic SQL in the code are the most
vulnerable areas in a PL/SQL code.

11 a and c AUTHID CURRENT_USER eliminates the
chances of SQL injection by executing a PL/
SQL program with the rights of its invokers
and not of the creator.

Index

Symbols
%BULK_EXCEPTIONS 59
%BULK_EXCEPTIONS attribute 252
%BULK_ROWCOUNT 59
%FOUND 36, 60
%ISOPEN 36, 60
%NOTFOUND 36, 60
%ROWCOUNT 36, 60
[DBA | ALL | USER]_ARGUMENTS 301,

302, 303
[DBA | ALL | USER]_DEPENDENCIES

308, 309
[DBA | ALL | USER]_OBJECTS 304, 305
[DBA | ALL | USER]_PROCEDURES 307
[DBA | ALL | USER]_SOURCE 306

A

ACID (Atomicity, Consistency, Isolation,
and Durability) 171

ADD_TRANSFORM function 329
advanced features, SecureFiles

compression 215, 216
deduplication 214, 215
enabling 214-216
encryption 216-219

ALTER SESSION command 178
ALTER SYSTEM command 218
ALTER [SYSTEM | SESSION]

command 274
AMM 271

ANALYZE function 352
AND logical operator

using, for conditional control statements
rephrasing 254

APPEND procedure 181
application life cycle development

code writing 299
tuning 299

architectural enhancements, SecureFiles
CHUNK size 208
high water mark contention 209
inode and space management 208
prefetching 209
transformation management 208
WGC 208

architecture, external routines
components 122
extproc process 122
Shared library of external routine 123

ASSM 208
associative arrays

about 83-87
data type 85
Inferred data 85
PL/SQL scalar data type 85
structure 85
User-deined type 85

AUTHID CURRENT_USER option 374
Automatic Memory Management. See

AMM
automatic result cache 274, 279, 280
Automatic Segment Space Management.

See ASSM

[406]

B
BasicFiles

migrating, to SecureFiles 220
BasicFiles to SecureFiles migration

Online Redeinition method 220-224
Partition method 220

BFILE 173
BFILE, DBMS_LOB data types 180
BFILENAME function 179
Binary Large Object. See BLOB
BLOB 172
BLOB, DBMS_LOB data types 180
bulk binding

implementing 248, 249
SAVE_EXCEPTIONS, using 252, 253
using 249-251

BULK COLLECT
about 249
facts 250

C

cache 197, 270
cache grid 273
cache group 273
callback 123
callout 123
call speciication 134
Character Large Object. See CLOB
CLOB 172
CLOSE procedure 181
code testing, for SQL injection laws

code, reviewing 386
Fuzz testing 387
static code analysis 387
test case, generating 387
test strategy 386

coding information
[DBA | ALL | USER]_ARGUMENTS 301
[DBA | ALL | USER]_DEPENDENCIES

308, 309
[DBA | ALL | USER]_OBJECTS 304, 305
[DBA | ALL | USER]_PROCEDURES 307
[DBA | ALL | USER]_SOURCE 306
dictionary views 300
inding, SQL developer used 310-319

tracking 299-308
collection

about 81, 103
associative arrays, using 84
categorizing 83
characteristics 103, 104
 type structure 82
initializing 115, 116
nested tables, using 84
non-persistent category 83
overview 82
persistent category 83
type, selecting 84
varrays, using 84

collection elements
manipulating 113, 115

collection methods, PL/SQL
about 105
COUNT function 106
DELETE function 112, 113
EXISTS function 105, 106
EXTEND function 109, 110
FIRST function 108
Last function 108
LIMIT function 107
NEXT function 109
PRIOR function 109
TRIM function 111

COLUMN_VALUE attribute 96
COMPARE function 181
compilation mode

choosing 230
interpreted compilation mode, choosing

230
native compilation mode, choosing 231
setting 231
setting, at database level 231
setting, at session level 231
settings, querying 232

compression feature 216
COMPRESS keyword 216
conditional control statements

rephrasing 254
rephrasing, AND logical operator used 254
rephrasing, OR logical operator used 254

CONNECT_DATA parameter 127, 133

[407]

CONSTRAINTS_AS_ALTER
parameter 331

CONSTRAINTS parameter 331
context area 35, 55
CONVERTTOBLOB procedure 181
CONVERTTOCLOB procedure 181
COPY procedure 181
COUNT function 106
CREATETEMPORARY procedure 181
cross method

package for Java class method, creating 140
Ctrl + Enter (F9) 19
cursor attributes

about 59
%FOUND 36, 60
%ISOPEN 36, 60
%NOTFOUND 36, 60
%ROWCOUNT 36, 60

cursor design
considerations 57, 58
cursor variables, using 58

cursor execution cycle 56
cursor execution cycle, stages

BIND 57
CLOSE 57
EXECUTE 57
FETCH 57
OPEN 56
PARSE 56

cursor expressions 56
cursors

cursor attributes 36, 37
execution cycle 35
FOR loop 38
overview 35

cursor structures
about 55
cursor design considerations 57, 58
cursor design, guidelines 58, 59
cursor execution cycle 56
cursor expressions 56
cursor variables 56
Dynamic SQL 56
explicit cursors 56
implicit cursors 56

cursor variables
about 56, 66-68
as arguments 71, 72
processing 70, 71
ref cursor, types 69
restrictions 73

D

database coniguration, for server-side
result cache

RESULT_CACHE_MAX_SIZE parameter
274

RESULT_CACHE_MODE parameter 273
RESULT_CACHE_REMOTE_EXPIRATION

parameter 274
database dependency

about 48
direct 49
direct dependency, displaying 49
enhancement 50
indirect 49
indirect dependency, displaying 49
issues 50
metadata 50

data caching 269
data deinitions (DDL) 149
data type 74
DBMS_ASSERT package

about 380, 381
ENQUOTE_LITERAL function 380
ENQUOTE_NAME function 380
identiier contexts 382
identiier, formatting 381
limitations 385
NOOP functions 380
QUALIFIED_SQL_NAME function 380
SCHEMA_NAME function 380
SIMPLE_SQL_NAME function 380
SQL_OBJECT_NAME function 380
usage guidelines 384, 385

DBMS_ASSERT validation
best practices 384

DBMS_DESCRIBE package 313
DBMS_HPROF package

subprograms 352
using 351

[408]

DBMS_LOB constants
CALL 180
DBMS_LOB constants 180
DBMS_LOB option types 180
DBMS_LOB option values 180
FILE_READONLY 180
LOBMAXSIZE 180
LOB_READONLY 180
LOB_READWRITE 180
SESSION 180

DBMS_LOB data types
BFILE 180
BLOB 180
CLOB 180
INTEGER 180
RAW 180
VARCHAR2 180

DBMS_LOB option types
OPT_COMPRESS 180
OPT_DEDUPLICATE 180
OPT_ENCRYPT 180

DBMS_LOB option values
COMPRESS_OFF 180
COMPRESS_ON 180
DEDUPLICATE_OFF 180
DEDUPLICATE_ON 180
ENCRYPT_OFF 180
ENCRYPT_ON 180

DBMS_LOB package
DBMS_LOB constants 180
DBMS_LOB data types 180
DBMS_LOB subprograms 181, 182
overview 179
rules, for BFILEs 183
rules, for internal LOBs 183
security model 179

DBMS_LOB subprograms
APPEND procedure 181
CLOSE procedure 181
COMPARE function 181
CONVERTTOBLOB procedure 181
CONVERTTOCLOB procedure 181
COPY procedure 181
CREATETEMPORARY procedure 181
ERASE procedure 181
FILECLOSEALL procedure 181
FILECLOSE procedure 181

FILEEXISTS function 181
FILEGETNAME procedure 181
FILEISOPEN function 181
FILEOPEN procedure 181
FRAGMENT_DELETE procedure 181
FRAGMENT_INSERT procedure 181
FRAGMENT_MOVE procedure 181
FRAGMENT_REPLACE procedure 181
FREETEMPORARY procedure 181
GETCHUNKSIZE function 182
GETLENGTH function 182
GETOPTIONS function 182
GET_STORAGE_LIMIT function 182
INSTR function 182
ISOPEN functions 182
ISTEMPORARY functions 182
LOADBLOBFROMFILE procedure 182
LOADCLOBFROMFILE procedure 182
LOADFROMFILE procedure 182
OPEN procedures 182
READ procedures 182
SETOPTIONS procedures 182
SUBSTR functions 182
TRIM procedures 182
WRITEAPPEND procedures 182
WRITE procedures 182

DBMS_METADATA
function type objects, retrieving in

ORADEV schema 336, 337
object dependencies on F_GET_LOC

function, retrieving 335
single object metadata, retrieving 332-334
system grants on ORADEV schema

retrieving 335
DBMS_METADATA package

about 326, 327
data types 327
parameter requirements 330
subprograms 328-330
SYS-owned object types 327, 328
transformation parameters 330, 331
transform handlers 331

DBMS_RESULT_CACHE package
about 273, 275
public constants 276
subprograms 276

[409]

DBMS_TRACE constant
NO_TRACE_ADMINISTRATIVE 342
NO_TRACE_HANDLED_EXCEPTIONS

342
TRACE_ALL_CALLS 342
TRACE_ALL_EXCEPTIONS 342
TRACE_ALL_LINES 342
TRACE_ALL_SQL 342
TRACE_ENABLED_CALLS 342
TRACE_ENABLED_EXCEPTIONS 342
TRACE_ENABLED_LINES 342
TRACE_ENABLED_SQL 342
TRACE_LIMIT 342
TRACE_MAJOR_VERSION 342
TRACE_MINOR_VERSION 342
TRACE_PAUSE 342
TRACE_RESUME 342
TRACE_STOP 342

DBMS_TRACE package
about 341
installing 341
subprograms 341, 363

DBMS_TRACE subprogram
CLEAR_PLSQL_TRACE procedure 342
COMMENT_PLSQL_TRACE procedure

343
GET_PLSQL_TRACE_LEVEL function 342
GET_PLSQL_TRACE_RUNNUMBER func-

tion 342
INTERNAL_VERSION_CHECK function

343
LIMIT_PLSQL_TRACE procedure 343
PAUSE_PLSQL_TRACE procedure 343
PLSQL_TRACE_VERSION procedure 343
RESUME_PLSQL_TRACE procedure 343
SET_PLSQL_TRACE procedure 343

db_secureile parameter 212
Debug option 22
DEDUPLICATE keyword 215
deduplication feature 215
DEFAULT parameter 331
DELETE function 112, 113
dense collection 88
development steps, VPD implementation

application context, creating 149
context key, creating 149
context key, setting 150

Policy function, creating 150
directories, LOB data types 174
DIRECTORY parameter 218
DML operations, performing on nested

table
column, selecting 92
data, inserting 91
data, updating 92, 93

DML operations, performing on varray
column, selecting 101, 102
data, inserting 101
varray instance, updating 102

DROP command 99
duration 197
Dynamic SQL 56

E

EMPTY_BLOB() function 178, 185
EMPTY_CLOB() function 178
encryption algorithms, SecureFiles

3DES168 216
AES128 216
AES192 216
AES256 216

ENCRYPT keyword 217
ENQUOTE_LITERAL function 380
ENQUOTE_NAME function 380
ERASE procedure 181
error_number parameter 43
ETL 351
exception

about 39
system-deined exception 39
user-deined exceptions 41

exception handling, in PL/SQL
about 39
exception propagation 46-48
system-deined exceptions 39
user-deined exceptions 41

EXCEPTION variable 45
EXISTS function 105, 106
explicit cursors 35, 56, 62
EXTEND function 109, 110
EXTEND method 110
external C programs

executing, from PL/SQL 131

[410]

executing, through C program 131, 132
external LOB 171
external procedures, beneits 130

about 130
enhanced performance 130
Integration of strengths 130
logical extensibility 130
Reusability of client logic 130

external program, publishing 134
external routines

about 121, 122
architecture 122
diagrammatic representation 124
external procedures, beneits 130
extproc process 124
Oracle Net Coniguration 125

Extraction, Transformation, and
Loading. See ETL

F

F_COMP_INT function 234
F_COMPUTE function 139
F_COMPUTE_SUM function 139
FGAC

about 146
overview 146
working 147, 148

FGD 50
F_GET_DOUBLE function 32
F_GET_FUN_DDL function 337
F_GET_LOC function 354
F_GET_NAME function 301
F_GET_SAL function 291
FILECLOSEALL procedure 181
FILECLOSE procedure 181
FILEEXISTS function 181
FILEGETNAME procedure 181
FILEISOPEN function 181
FILEOPEN procedure 181
Fine Grained Access Control 145.

See FGAC
Fine Grained Dependency. See FGD
FIRST function 108
FORALL function 238
FORALL loop 249
FORCE parameter 331

FORMAT_CALL_STACK function 316
forward declaration 248
F_PRINT_NAME function 303
FRAGMENT_DELETE procedure 181
FRAGMENT_INSERT procedure 181
FRAGMENT_MOVE procedure 181
FRAGMENT_REPLACE procedure 181
FREETEMPORARY procedure 181
frst-order attack 369
functions

about 29
characteristics 29
execution methods 31
SQL expressions calling functions, rules 32
standalone user-deined function 32
syntax 30

fuzz testing 387

G

GETCHUNKSIZE function 182
GETLENGTH function 182
GETOPTIONS function 182
GET_QUERY function 329
GET_STORAGE_LIMIT function 182
GET_[XML | DDL | CLOB] functions 329
GRANT command 174
Graphical User Interface. See GUI
GUI 13

H

hierarchical proiler
Analyzer 351
Data collector 351
DBMS_HPROF package, using 351
eficiencies 351
PL/SQL program proiling

demonstration 352-357
proiler information, viewing 352

hierarchical proiling 351

I

identiier contexts, DBMS_ASSERT package
basic 382
literal 382
qualiied 383, 384

[411]

quoted identiier 382
simple 382
unquoted identiier 382

identiiers
about 319
activities identiication, PL/Scope tool used

319
IF THEN ELSE expression 254
IMBD 273
implicit cursors 35, 56, 60, 62
INHERIT parameter 331
In Memory Database. See IMBD
INSTR function 182
INTEGER, DBMS_LOB data types 180
internal LOB 171

BLOB type 172
CLOB type 172
NCLOB type 172

interpreted compilation
about 228
program unit, comparing 233-235

intra unit inlining
enabling 255

ISOPEN functions 182
ISTEMPORARY functions 182

J

Java pool 136
Java programs

executing, from PL/SQL 136
Java class method, calling 137
Java class, uploading into database 137
package for Java class method, creating 140

Java programs, executing from PL/SQL
about 136
Java class method, calling 137
Java class, uploading into database 137
loadjava utility 137-139
packages, creating 140

Java Virtual Machine. See JVM
JVM 136

L

LAST function 108
LENGTH function 194
LIMIT function 107

LIMIT method 107
LISTENER.ora 126
Literal 382
LOADBLOBFROMFILE procedure 182
LOADCLOBFROMFILE procedure 182
LOADFROMFILE procedure 182
loadjava utility 137, 139
LOB

closing 193
column states 193
migrating, from LONG data types 194-196
opening 193
restrictions 194
row, locking 193

LOB column
accessing 193, 194
data, inserting into 185

LOB column states
Empty 193
NULL 193
Populated 193

LOB data
deleting 192
modifying 190-192
selecting 189, 190

LOB data type columns
initializing 184

LOB data types
about 170, 172
BFILE 173
BFILEs, managing 178, 179
BFILEs, securing 178, 179
classiication chart 171
columns, creating in table 175-177
creating 173
creating, syntax 175, 176
DBMS_LOB package 179
directories 173
external LOB 171
internal LOB 171
internal LOBs, managing 178
LOB locators 172
LOB value 172
managing 177-179
populating, external ile used 185-189
temporary LOBs 173

lob_loc 197

[412]

LONG data types
limitations 170
migrating to LOB 194

LONG RAW data types
limitations 170

M

machine code (bytecode) 228
manual result cache 274, 277

N

native compilation. See NCOMP
NCOMP

about 228, 235
program unit, comparing 233-235

nested table
about 84-89
creating, as database object 90, 91
DML operations 91
features 94-97
in PL/SQL 93, 94
using 84
versus associative arrays 104
versus varray 105

NOCACHE mode 210
non-persistent collection

associative array 83
NOOP functions 380
NOT NULL constraint 241-243

O

OCI client results cache 273
OID parameter 331
OLTP 209
Online Redeinition method

about 221
LOB columns, migrating 222, 223
pre-requisites 221

Online Transaction Processing. See OLTP
OPEN function 329
OPEN procedures 182
OPENW function 329
Oracle 11g

about 170
memory infrastructure diagram 271

Oracle Common Language Runtime.
See ORACLR

Oracle initialization parameter
enabling 256
PLSQL_OPTIMIZE_LEVELs 256-260

Oracle Net Coniguration
about 125
LISTENER.ora 126-129
TNSNAMES.ora 125, 126
verifying 129, 130

Oracle-supplied packages
DBMS_ALERT 51
DBMS_HTTP 51
DBMS_LOCK 51
DBMS_OUTPUT 51
DBMS_SCHEDULER 51
DBMS_SESSION 51
packages 51
packages, categorizing 51, 52
reviewing 51
UTL_FILE 51
UTL_MAIL 51

Oracle Technology Network. See OTN
ORACLR 123
OR logical operator

using, for conditional control statements
rephrasing 254

OTN 15

P

packages
about 33
advantage 33
components, package body 34
components, package speciication 33, 34
creating, syntax 34

parent table 89
partition method

about 220
new SecureFile partition 220
partitioned table, creating 220

performance optimization 269
persistent collection

nested table 84
Varray (variable-size array) 84

PGA 36

[413]

PL/Scope tool
about 320
identiier collection 320, 321
identiier information, capturing 322-325
key features 320
report 322
report, objectives 325, 326

plshprof utility
about 357, 359
sample reports 359, 360

PLS_INTEGER data type
using, for arithmetic operations 243, 244

PL/SQL
about 10
accomplishments 10
collection methods 105
comparing, with SQL 239
exception handling 39
external C programs, executing 131
external C programs, executing through

external procedure 131-135
Java class method, calling 137
Java class, uploading into database 137
Java programs, executing 136
nested table 93, 94
PLS_INTEGER data type, using 243, 244
program 11
varray 99, 100

PL/SQL block
declaration 11
execution 11
header 11
structure 11
structure diagram 12

PL/SQL code
bulk binding, using 248-251
implicit data type conversion,

avoiding 239, 241
modularizing 246-248
NOT NULL constraint 241-243
proiling 339
SIMPLE_INTEGER data type,

using 245, 246
SQL, comparing with PL/SQL 239
tracing 339
tuning, areas 238

PL/SQL code, designing
cursor structures 55
cursor variables 66
subtypes 74

PL/SQL code security 365
PLSQL_CODE_TYPE parameter 231
PLSQL_DEBUG parameter 343, 344
PL/SQL development environments

SQL Developer 13
SQL*Plus 24

PL/SQL function result cache
argument and return type limitations 294
function structural limitations 294
limitations 294

PL/SQL native compilation
database, compiling 235, 236, 237

PLSQL_OPTIMIZE_LEVEL=0 256, 257
PLSQL_OPTIMIZE_LEVEL=1 258, 259
PLSQL_OPTIMIZE_LEVEL=2 259, 260
PLSQL_OPTIMIZE_LEVEL=3 260-262
PL/SQL packages. See packages
PL/SQL program

anonymous 11
named 11
nested 11
plshprof utility 357
proiling 350
tracing 340

PL/SQL program, proiling
hierarchical proiling 351

PL/SQL program, tracing
DBMS_TRACE package 341
methods 340
PLSQL_DEBUG parameter 343

PL/SQL trace information
viewing 344-347

PL/SQL tracing
demonstrating 347-350

PLSQL_WARNINGS parameter 255, 262
policy types

CONTEXT_SENSITIVE 154
DYNAMIC (Default) 154
SHARED_CONTEXT_SENSITIVE 154
SHARED_STATIC 154
STATIC 154

[414]

policy utilities
drop 164
refresh 164

Pragma 41
PRAGMA EXCEPTION_INIT 41
PRAGMA INLINE 262-264
PRETTY parameter 331
PRIOR function 109
Procedural Language-Structured Query

Language. See PL/SQL
procedure

about 27
characteristics 27
executing 28
IN OUT parameters 27
IN parameters 27
OUT parameters 27
syntax 28

Process Global Area. See PGA
proiling 339
Program Unit Arguments option 310

Q

QUALIFIED_SQL_NAME function 380
Quoted identiier 382

R

RAISE_APPLICATION_ERROR
procedure 43-46

RAW, DBMS_LOB data types 180
READ procedures 182
real native compilation

about 229
accomplishments 229

REF_CONSTRAINTS parameter 331
ref cursor

about 69
strong type 69
SYS_REFCURSOR 69
weak type 69

Remote-Ops (RO) 126
result cache

about 270, 271
implementing, in PL/SQL 288
implementing, in SQL 277
limitation 287

OCI client 273
server-side result cache 271

result cache implementation, in PL/SQL
about 288
cross-session availability 292
invalidating 292, 293
limitations 294
RESULT_CACHE clause 288-291, 292

result cache implementation, in SQL
automatic result cache 279, 280
manual result cache 277, 279
memory report, displaying 286
read consistency 287
result cache metadata 281
SQL result cache, invalidating 284, 285

RESULT_CACHE_MAX_SIZE parameter
274

result cache metadata
about 281
dependent objects 283
memory statistics 283, 284

RESULT_CACHE_MODE
parameter 273, 278

RESULT_CACHE_REMOTE_EXPIRATION
parameter 274

RLS 147
Row Level Security. See RLS

S

SCHEMA_NAME function 380, 381
second-order attack 369
SecureFile performance graph 209
SECUREFILE property 223
SecureFiles

about 206
advanced features, enabling 214
architectural enhancements 207
encryption algorithms 216
feature 207
LOB features 210
metadata 213
migrating, from BasicFiles 220
working with 211-214

SEGMENT_ATTRIBUTES parameter 331
SERVEROUTPUT parameter 12

[415]

server-side result cache
about 271
database, coniguring 273-275
DBMS_RESULT_CACHE package 276, 277
PL/SQL function result cache 272
SQL query result cache 272

session cursors 56
SETOPTIONS procedures 182
SGA 83, 151
SIMPLE_INTEGER data type

using 245, 246
SIMPLE_SQL_NAME function 380
SIZE_BYTE_KEYWORD parameter 331
SQL

about 9
comparing, with PL/SQL 239

SQL Developer
about 13, 310
accomplishments 13
anonymous PL/SQL block, creating 21
anonymous PL/SQL block, executing 21
connection, creating 15
DBMS_DESCRIBE package 313
features 14
history 15
Oracle SQL Developer, start page 14
PL/SQL code, debugging 21, 22
scripts, editing 23
scripts, saving 23
SQL script, calling from 19, 20
SQL statement, executing 18, 19
SQL Worksheet 16, 18
using, for coding information

search 310-319
SQLERRM function 252
SQL injection

about 366
attack immunization 370
attacks, preventing 369, 370
attack types 369
attack types, irst-order attack 369
attack types, second-order attack 369
code injection, example 366, 368
laws, testing 386
impacts 369
overview 366

SQL injection attack immunization
about 370
attack surface, reducing 370
bind arguments 378, 379
deiner's right 371-375
dynamic SQL, avoiding 375-377
input sanitization , DBMS_ASSERT

used 379
owner's right 371-375
user privileges, controlling 371

SQL injection laws
code, testing 386

SQL_OBJECT_NAME function 380
SQL*Plus

about 24, 25
anonymous PL/SQL block, executing 26
evolution cycle 24
SQL statement, executing 26

SQLTERMINATOR parameter 331
START_PROFILING procedure 352
static code analysis 387
STOP_PROFILING procedure 352
STORAGE parameter 331
Structured Query Language. See SQL
subprograms, DBMS_RLS package

ADD_GROUPED_POLICY 155
ADD_POLICY 155
ADD_POLICY_CONTEXT 155
CREATE_POLICY_GROUP 155
DELETE_POLICY_GROUP 155
DISABLE_GROUPED_POLICY 155
DROP_GROUPED_POLICY 155
DROP_POLICY 155
DROP_POLICY_CONTEXT 155
ENABLE_GROUPED_POLICY 155
ENABLE_POLICY 155
REFRESH_POLICY 155

SUBSTR functions 182
subtype

about 75
beneits 77
classifying 75
evolution 75
Oracle predeined subtypes 75
type compatibility 77
user-deined subtypes 76

[416]

Sum method
package for Java class method, creating 140

SYS_CONTEXT function 150, 162
SYS.KU$_DDL 327
SYS.KU$_DDLS 327
SYS.KU$_ERRORLINE 328
SYS.KU$_ERRORLINES 328
SYS.KU$_MULTI_DDL 327
SYS.KU$_MULTI_DDLS 327
SYS.KU$_PARSED_ITEM 327
SYS.KU$_PARSED_ITEMS 327
SYS.KU$_SUBMITRESULT 328
SYS.KU$_SUBMITRESULTS 328
SYS_REFCURSOR 69
system-deined exception

about 39
list 40

System Global Area. See SGA

T

TABLESPACE parameter 331
TDE 210, 216
temporary LOBs

creating 198, 199
managing 197
operations 196
releasing 198, 199
using 196
validating 198, 199

tkprof utility 340
TNS 125
TRACE parameter 356
tracing

about 339
DBMS_APPLICATION_INFO method 340
DBMS_SESSION and DBMS_MONITOR

method 340
DBMS_TRACE method 340
PL/SQL programs 340

Transparent Data Encryption. See TDE
Transparent Network Substrate. See TNS
trcsess utility 340
TRIM function 111
TRIM procedures 182

U

UGA 83, 150
Unquoted identiier 382
user-deined exceptions

about 41
declaring, in PL/SQL block 41, 42
declaring, ways 41
RAISE_APPLICATION_ERROR procedure

43-46
User Global Area. See UGA
USING clause 378

V

VARCHAR2, DBMS_LOB data types 180
varray

about 84, 98, 99
as database collection type 100
DML operations 100
in PL/SQL 99, 100
using 84
versus nested table 105

VARRAY.DELETE method 113
Virtual Private Database. See VPD
VPD

about 145, 146
features 148, 149
implementing, development steps 149
policy metadata 163, 164
RLS, working 147
working 147, 148

VPD implementation
application context 150
application context, using 159-162
demonstrating 156-162
development, steps 149
policy association, DBMS_RLS

package used 155
policy function 153, 154
simple security policy, using 157

W

WGC 208
WRITEAPPEND procedures 182
WRITE procedures 182

Thank you for buying

Oracle Advanced PL/SQL

Developer Professional Guide

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more speciic and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it irst before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OCA Oracle Database 11g: SQL

Fundamentals I: A Real World
Certiication Guide (1ZO-051)
ISBN: 978-1-84968-364-7 Paperback: 460 pages

Ace the 1Z0-051 SQL Fundamentals I exam, and
become a successful DBA by learning how SQL
concepts work in the real world

1. Successfully clear the irst stepping stone
towards attaining the Oracle Certiied Associate
Certiication on Oracle Database 11g

2. This book uses a real world example-driven
approach that is easy to understand and
makes engaging

3. Complete coverage of the prescribed syllabus

Oracle SQL Developer 2.1
ISBN: 978-1-847196-26-2 Paperback: 496 pages

Database design and development using this
feature-rich, powerful, user-extensible interface

1. Install, conigure, customize, and manage your
SQL Developer environment

2. Includes the latest features to enhance
productivity and simplify database
development

3. Covers reporting, testing, and debugging
concepts

4. Meet the new powerful Data Modeling
tool – Oracle SQL Developer Data Modeler

Please check www.PacktPub.com for information on our titles

Oracle Database 11gR2

Performance Tuning Cookbook
ISBN: 978-1-84968-260-2 Paperback: 542 pages

Over 80 recipes to help beginners achieve better
performance from Oracle Database applications

1. Learn the right techniques to achieve best
performance from the Oracle Database

2. Avoid common myths and pitfalls that slow
down the database

3. Diagnose problems when they arise and employ
tricks to prevent them

4. Explore various aspects that affect performance,
from application design to system tuning

Getting Started with Oracle

Data Integrator 11g:

A Hands-On Tutorial
ISBN: 978-1-84968-068-4 Paperback: 450 pages

Combine high volume data movement, complex
transformations and real-time data integration with
the robust capabilities of ODI in this practical guide

1. Discover the comprehensive and sophisticated
orchestration of data integration tasks made
possible with ODI, including monitoring and
error-management

2. Get to grips with the product architecture
and building data integration processes with
technologies including Oracle, Microsoft SQL
Server and XML iles

3. A comprehensive tutorial packed with tips,
images and best practices

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Overview of PL/SQL Programming Concepts
	PL/SQL—the procedural aspect
	My first PL/SQL program

	PL/SQL development environments
	SQL Developer
	SQL Developer—the history
	Creating a connection
	SQL Worksheet
	Executing a SQL statement
	Calling a SQL script from SQL Developer
	Creating and executing an anonymous PL/SQL block
	Debugging the PL/SQL code
	Editing and saving the scripts

	SQL*Plus
	Executing a SQL statement in SQL*Plus
	Executing an anonymous PL/SQL block

	Procedures
	Executing a procedure

	Functions
	Function—execution methods
	Restrictions on calling functions from SQL expressions

	PL/SQL packages
	Cursors—an overview
	Cursor execution cycle
	Cursor attributes
	Cursor FOR loop

	Exception handling in PL/SQL
	System-defined exceptions
	User-defined exceptions
	The RAISE_APPLICATION_ERROR procedure

	Exception propagation

	Managing database dependencies
	Displaying the direct and indirect dependencies
	Dependency metadata
	Dependency issues and enhancements

	Reviewing Oracle-supplied packages
	Summary
	Practice exercise

	Chapter 2: Designing PL/SQL Code
	Understanding cursor structures
	Cursor execution cycle
	Cursor design considerations
	Cursor design—guidelines
	Cursor attributes
	Implicit cursors
	Explicit cursors

	Cursor variables
	Ref cursor types—strong and weak
	SYS_REFCURSOR

	Processing a cursor variable
	Cursor variables as arguments
	Cursor variables—restrictions

	Subtypes
	Subtype classification
	Oracle's predefined subtypes
	User-defined subtypes

	Type compatibility with subtypes

	Summary
	Practice exercise

	Chapter 3: Using Collections
	Collections—an overview
	Categorization
	Selecting an appropriate collection type

	Associative arrays
	Nested tables
	Nested table collection type as the database object
	DML operations on nested table columns
	A nested table collection type in PL/SQL

	Additional features of a nested table

	Varray
	Varray in PL/SQL
	Varray as a database collection type
	DML operations on varray type columns

	Collections—a comparative study
	Common characteristics of collection types
	Nested table versus associative arrays
	Nested table versus varrays

	PL/SQL collection methods
	EXISTS
	COUNT
	LIMIT
	FIRST and LAST
	PRIOR and NEXT
	EXTEND
	TRIM
	DELETE

	Manipulating collection elements
	Collection initialization
	Summary
	Practice exercise

	Chapter 4: Using Advanced Interface Methods
	Understanding external routines
	Architecture of external routines
	Oracle Net Configuration
	TNSNAMES.ora
	LISTENER.ora
	Oracle Net Configuration verification

	Benefits of external procedures

	Executing external C programs from PL/SQL
	Executing C program through external procedure—development steps

	Executing Java programs from PL/SQL
	Calling a Java class method from PL/SQL
	Uploading a Java class into the database—development steps
	The loadjava utility—an illustration
	Creating packages for Java class methods

	Summary
	Practice exercise

	Chapter 5: Implementing VPD with Fine Grained Access Control
	Fine Grained Access Control
	Overview
	Virtual Private Database—the alias
	How FGAC or VPD works?
	Salient features of VPD

	VPD implementation—outline and components
	Application context
	Policy function definition and implementation of row-level security
	Associating a policy using the DBMS_RLS package

	VPD implementation—demonstrations
	Assignment 1—implementing VPD using simple security policy
	Assignment 2—implementing VPD using an application context

	VPD policy metadata
	Policy utilities—refresh and drop
	Summary
	Practice exercise

	Chapter 6: Working with Larger Objects
	Introduction to the LOB data types
	Internal LOB
	External LOB

	Understanding the LOB data types
	LOB value and LOB locators
	BLOB or CLOB!
	BFILE
	Temporary LOBs

	Creating LOB data types
	Directories
	Creating LOB data type columns in a table

	Managing LOB data types
	Managing internal LOBs
	Securing and managing BFILEs
	The DBMS_LOB package—overview
	Security model
	DBMS_LOB constants
	DBMS_LOB data types
	DBMS_LOB subprograms
	Rules and regulations

	Working with the CLOB, BLOB, and BFILE data types
	Initializing LOB data type columns
	Inserting data into a LOB column
	Populating a LOB data type using an external file
	Selecting LOB data
	Modifying the LOB data
	Delete LOB data
	Miscellaneous LOB notes
	LOB column states
	Locking a row containing LOB
	Opening and closing LOBs
	Accessing LOBs
	LOB restrictions

	Migrating from LONG to LOB
	Using temporary LOBs
	Temporary LOB operations
	Managing temporary LOBs
	Validating, creating, and freeing a
temporary LOB

	Summary
	Practice exercise

	Chapter 7: Using SecureFile LOBs
	Introduction to SecureFiles
	SecureFile LOB—understanding
	Architectural enhancements in SecureFiles

	SecureFile LOB features

	Working with SecureFiles
	SecureFile metadata
	Enabling advanced features in SecureFiles
	Deduplication
	Compression
	Encryption

	Migration from BasicFiles to SecureFiles
	Online Redefinition method

	Summary
	Practice exercise

	Chapter 8: Compiling and Tuning to Improve Performance
	Native and interpreted compilation techniques
	Real native compilation
	Selecting the appropriate compilation mode
	When to choose interpreted compilation mode?
	When to choose native compilation mode?

	Setting the compilation mode
	Querying the compilation settings
	Compiling a program unit for a native or interpreted compilation
	Compiling the database for PL/SQL native compilation (NCOMP)

	Tuning PL/SQL code
	Comparing SQL and PL/SQL
	Avoiding implicit data type conversion
	Understanding the NOT NULL constraint
	Using the PLS_INTEGER data type for arithmetic operations
	Using a SIMPLE_INTEGER data type
	Modularizing the PL/SQL code
	Using bulk binding
	Using SAVE_EXCEPTIONS

	Rephrasing the conditional control statements
	Conditions with an OR logical operator
	Conditions with an AND logical operator

	Enabling intra unit inlining
	PLSQL_OPTIMIZE_LEVEL—the Oracle initialization parameter
	Case 1—PLSQL_OPTIMIZE_LEVEL = 0
	Case 2—PLSQL_OPTIMIZE_LEVEL = 1
	Case 3—PLSQL_OPTIMIZE_LEVEL = 2
	Case 4—PLSQL_OPTIMIZE_LEVEL = 3

	PRAGMA INLINE
	Summary
	Practice exercise

	Chapter 9: Caching to Improve Performance
	Introduction to result cache
	Server-side result cache
	SQL query result cache
	PL/SQL function result cache

	OCI client results cache

	Configuring the database for the server result cache
	The DBMS_RESULT_CACHE package

	Implementing the result cache in SQL
	Manual result cache
	Automatic result cache
	Result cache metadata
	Query result cache dependencies
	Cache memory statistics

	Invalidation of SQL result cache
	Displaying the result cache memory report
	Read consistency of the SQL result cache
	Limitation of SQL result cache

	Implementing result cache in PL/SQL
	The RESULT_CACHE clause
	Cross-session availability of cached results
	Invalidation of PL/SQL result cache
	Limitations of PL/SQL function result cache
	Argument and return type restrictions
	Function structural restrictions

	Summary
	Practice exercise

	Chapter 10: Analyzing PL/SQL Code
	Track coding information
	[DBA | ALL | USER]_ARGUMENTS
	[DBA | ALL | USER]_OBJECTS
	[DBA | ALL | USER]_SOURCE
	[DBA | ALL | USER]_PROCEDURES
	[DBA | ALL | USER]_DEPENDENCIES

	Using SQL Developer to find coding information
	The DBMS_DESCRIBE package
	DBMS_UTILITY.FORMAT_CALL_STACK
	Tracking propagating exceptions in PL/SQL code

	Determining identifier types and usages
	The PL/Scope tool
	The PL/Scope identifier collection
	The PL/Scope report
	Illustration
	Applications of the PL/Scope report

	The DBMS_METADATA package
	DBMS_METADATA data types and subprograms
	Parameter requirements
	The DBMS_METADATA transformation parameters and filters
	Working with DBMS_METADATA—illustrations
	Case 1—retrieve the metadata of a single object
	Case 2—retrieve the object dependencies on the F_GET_LOC function
	Case 3—retrieve system grants on the ORADEV schema
	Case 4—retrieve objects of function type in the ORADEV schema

	Summary
	Practice exercise

	Chapter 11: Profiling and Tracing PL/SQL Code
	Tracing the PL/SQL programs
	The DBMS_TRACE package
	Installing DBMS_TRACE
	DBMS_TRACE subprograms

	The PLSQL_DEBUG parameter and the DEBUG option
	Viewing the PL/SQL trace information
	Demonstrating the PL/SQL tracing

	Profiling the PL/SQL programs
	Oracle hierarchical profiler—the DBMS_HPROF package
	View profiler information
	Demonstrating the profiling of a PL/SQL program

	The plshprof utility
	Sample reports

	Summary
	Practice exercise

	Chapter 12: Safeguarding PL/SQL Code against SQL Injection Attacks
	SQL injection—an introduction
	SQL injection—an overview
	Types of SQL injection attacks
	Preventing SQL injection attacks

	Immunizing SQL injection attacks
	Reducing the attack's surface
	Controlling user privileges
	Invoker's and definer's rights

	Avoiding dynamic SQL
	Bind arguments
	Sanitizing inputs using DBMS_ASSERT
	The DBMS_ASSERT package

	Testing the code for SQL injection flaws
	Test strategy
	Reviewing the code
	Static code analysis
	Fuzz tools
	Generating test cases

	Summary
	Practice exercise

	Appendix: Answers to Practice Questions
	Chapter 1, Overview of PL/SQL Programming Concepts
	Chapter 2, Designing PL/SQL Code
	Chapter 3, Using Collections
	Chapter 4, Using Advanced Interface Methods
	Chapter 5, Implementing VPD with Fine Grained Access Control
	Chapter 6, Working with Large Objects
	Chapter 7, Using SecureFile LOBs
	Chapter 8, Compiling and Tuning to Improve Performance
	Chapter 9, Caching to Improve Performance
	Chapter 10, Analyzing PL/SQL Code
	Chapter 11, Profiling and Tracing PL/SQL Code
	Chapter 12, Safeguarding PL/SQL Code against SQL Injection Attacks

	Index

